Letters in Mathematical Physics

, Volume 38, Issue 4, pp 349–363 | Cite as

Toda lattice realization of integrable hierarchies

  • L. Bonora
  • C. P. Constantinidis
  • E. Vinteler
Article

Abstract

We present a new realization of scalar integrable hierarchies in terms of the Toda lattice hierarchy. In other words, we show on a large number of examples that an integrable hierarchy, defined by a pseudo-differential Lax operator, can be embedded in the Toda lattice hierarchy. Such a realization in terms the Toda lattice hierarchy seems to be as general as the Drinfeld-Sokolov realization.

Mathematics Subject Classification (1991)

35G53 

Key words

Toda lattice hierarchy integrable hierarchies Gelfand-Dickey formalism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dickey, L. A.: Soliton Equations and Hamiltonian Systems, World Scientific, Singapore, 1991.Google Scholar
  2. 2.
    Drinfeld, V. G. and Sokolov, V. V.: Algebras and equations of Korteweg-De Vries type,J. Soviet Math. 30 (1984), 1975.Google Scholar
  3. 3.
    Bonora, L. and Xiong, C. S.: Multi-matrix models without continuum limit,Nuclear Phys. B. 405 (1993), 191.Google Scholar
  4. 4.
    Bonora, L. Constantinidis, C. P. and Xiong, C. S.: Exact correlators of two-matrix models, SISSA 189/94/EP, hepth/9412006, to appear inJ. Geom. Phys. Google Scholar
  5. 5.
    Bonora, L. and Xiong, C. S.: Multi-field representation of the KP heirarchy and multi-matrix models,Phys. Lett. B. 317 (1993), 329.Google Scholar
  6. 6.
    Bonora, L. and Xiong, C. S.: The (N, M)-th KdV hierarchy and the associated algebras,J. Math. Phys. 35 (1994), 5781.Google Scholar
  7. 7.
    Bonora, L., Liu, Q. P. and Xiong, C. S.: The integrable hierarchy constructed from a pair of KdV-type hierarchies and its associatedW algebra, hep-th/9408035, to be published inComm. Math. Phys. Google Scholar
  8. 8.
    Aratyn, H., Ferreira, L. A., Gomes, J. F. and Zimerman, A. H.: On two-current realization of KP hierarchy,Nuclear Phys. B. 402 (1993), 229. Aratyn, H., Nissimov, E., Pacheva, S. and Zimerman, A. H.:Phys. Lett. 341B (1994), 19.Google Scholar
  9. 9.
    Dickey, L. A.: On the constrained KP hierarchy,Lett. Math. Phys. 34 (1995), 379;35 (1995), 229.Google Scholar
  10. 10.
    Ueno, K. and Takasaki, K.: Toda lattice hierarchy,Adv. Stud. Pure Math. 4 (1984), 1.Google Scholar
  11. 11.
    Grimm, R. (ed.):Proc. W95, Marseille, July 1995.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • L. Bonora
    • 1
    • 2
  • C. P. Constantinidis
    • 3
  • E. Vinteler
    • 4
  1. 1.International School for Advanced Studies (SISS/ISAS)TriesteItaly
  2. 2.Sezione di TriesteINFNTriesteItaly
  3. 3.Instituto di Física Teórica-UNESPSào PaoloBrasil
  4. 4.International School for Advanced Studies (SISSA/ISAS)TriesteItaly

Personalised recommendations