International Journal of Theoretical Physics

, Volume 16, Issue 9, pp 635–648 | Cite as

Poincaré canonical momenta and nambu mechanics

  • Andrés J. Kálnay
  • Ricardo Tascón


We show that if certain Poincaré-like integrals are conserved, then to each configuration coordinate of a system an entity can be associated that is an acceptable generalization of the notion of canonical momentum: In the particular case of standard mechanics, the canonical momenta are retrieved. Under certain general restrictions, the Poincaré momenta make sense for either mechanical or general systems for which we do not have (or are not aware of) entities (like the Lagrangian) that are generally used to define the momentum. The Poincaré momentum may also make sense for systems whose characteristics are difficult, or impossible, to reconcile with the notion of the usual canonical momentum. It is also relevant for certain cases where a Lagrangian exists, but it leads to a mixture of physical and unphysical entities. In particular, we show that while physical canonical momenta do not generally exist in the new Nambu mechanics (because of the dimensionality of state vector space), the Poincaré momenta exist, they are physical, and have the properties we could have expected for the mechanics.


Field Theory Vector Space Elementary Particle Quantum Field Theory State Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bayen, F., and Flato, M. (1975).Physical Review D,11, 3049.Google Scholar
  2. Bergmann, P. G., and Goldberg, I. (1955).Physical Review,98, 531.Google Scholar
  3. Bergmann, P. G., Goldberg, I., Janis, A., and Newman, E. (1956).Physical Review,103, 807.Google Scholar
  4. Cohen, I., and Kálnay, A. J. (1975).International Journal of Theoretical Physics,12, 61.Google Scholar
  5. Currie, D. G., and Saletan, E. J. (1972).Nuovo Cimento,9B, 143.Google Scholar
  6. Dirac, P. A. M. (1950).Canadian Journal of Mathematics,2, 129.Google Scholar
  7. Dirac, P. A. M. (1951).Canadian Journal of Mathematics,3, 1.Google Scholar
  8. Dirac, P. A. M. (1958).Proceedings of the Royal Society of London, Series A,246, 326.Google Scholar
  9. Dirac, P. A. M. (1964).Lectures on Quantum Mechanics, Belfer Graduate School of Sciences Monograph Series No. 2. Yeshiva University, New York.Google Scholar
  10. Gantmacher, F. (1970).Lectures in Analytical Mechanics, Mir Publishers, Moscow.Google Scholar
  11. García Sucre, M., and Kálnay, A. J. (1975).International Journal of Theoretical Physics,12, 149.Google Scholar
  12. Kálnay. A. J. (1974). “On the New Nambu Mechanics, its Classical Partners and its Quantization.” InProceedings of the International Colloquium C.N.R.S. (Aix-en-Provence, France, 1974)Géométrie Symplectique et Physique Mathématique, Souriau, J. M., Ed.Google Scholar
  13. Kálnay, A. J., and Tascón, R. (1976). “On Lagrange, Hamilton-Dirac and Nambu Mechanics,” Preprint IVIC, Caracas 101, Venezuela. To be published inPhysical Review D.Google Scholar
  14. Lee Hwa-Chung, (1947).Proceedings of the Royal Society of Edinburgh.(A),62, 237.Google Scholar
  15. Lévy-Leblond, J.-M. (1969).Communications in Mathematical Physics,12, 64.Google Scholar
  16. Mukunda, N., and Sudarshan, E. C. G. (1976).Physical Review D,13, 2846.Google Scholar
  17. Nambu, H. (1973).Physical Review D,7, 2405.Google Scholar
  18. Ruggeri, G. J. (1975).International Journal of Theoretical Physics,12, 287.Google Scholar
  19. Saletan, E. J., and Cromer, A. H. (1971).Theoretical Mechanics. John Wiley, New York.Google Scholar
  20. Sudarshan, E. C. G., and Mukunda, N. (1974).Classical Dynamics: A Modern Perspective. John Wiley, New York.Google Scholar
  21. Whittaker, E. T. (1937).A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, London.Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • Andrés J. Kálnay
    • 1
  • Ricardo Tascón
    • 2
  1. 1.Instituto Venezolano de Investigaciones Cientificas (IVIC)Caracas 101Venezuela
  2. 2.Departamento de Física y MatemáticasInstituto Universitario Pedagógico de CaracasCaracas 102Venezuela

Personalised recommendations