Advertisement

The role of molybdenum in human biology

  • M. P. Coughlan
Article

Abstract

Molybdenum, because of its unique chemistry, is the biological catalyst for reactions in which proton and electron transfer, and possibly oxygen transfer, are coupled. The molybdoenzymes in man are sulphite oxidase, xanthine oxidase/dehydrogenase and aldehyde oxidase. The former is essential for detoxication of the sulphite arising from metabolism of sulphur-containing amino acids, from ingestion of bisulphite preservative and from inhalation of sulphur dioxide, an atmospheric pollutant. Whether, or not, any of the reactions catalysed by xanthine oxidase/dehydrogenase and aldehyde oxidase are necessary for human well-being has yet to be established.

Keywords

Oxygen Sulphur Dioxide Aldehyde Molybdenum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abumrad, N. N., Schneider, A. J., Steel, D. and Rogers, L. S. Amino acid intolerance during prolonged total parenteral nutrition reversed by molybdate therapy.Am. J. Clin. Nutr. 34 (1981) 2551–2559PubMedGoogle Scholar
  2. Ames, B. N., Cathcart, R., Scweirs, E. and Hochstein, P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis.Proc. Natl. Acad. Sci. USA 78 (1981) 6858–6862PubMedGoogle Scholar
  3. Barber, M. J. and Siegel, L. M. EPR and potentiometric studies of the molybdenum centre in xanthine oxidase and other molybdenum hydroxylases. In Barry, H. F. and Mitchell, P. C. H. (eds.)Proceedings of the Fourth International Conference on the Chemistry and Uses of Molybdenum, Climax Molybdenum Co., Ann. Arbor, Michigan, 1982, in pressGoogle Scholar
  4. Barber, M. J., Coughlan, M. P., Rajagopalan, K. V. and Siegel, L. M. Properties of the prosthetic groups of rabbit liver aldehyde oxidase.Biochemistry 21 (1982) 3561–3568PubMedGoogle Scholar
  5. Betcher-Lange, S. L., Coughlan, M. P. and Rajagopalan, K. V. Syncatalytic modification of chicken liver xanthine dehydrogenase by hydrogen peroxide. The nature of the reaction.J. Biol. Chem. 254 (1979) 8825–8829PubMedGoogle Scholar
  6. Bortels, H. Molybdenum as a catalyst in the biological fixation of nitrogen.Arch. Mikrobiol. 1 (1930) 333–342Google Scholar
  7. Bray, R. C. Molybdenum iron-sulphur flavin hydroxylases and related enzymes.Enzymes 12 (1975) 299–419Google Scholar
  8. Bray, R. C. The reactions and the structures of molybdenum centres in enzymes. In Meister, A. (ed.)Advances in Enzymology and Related Areas of Molecular Biology, Wiley, New York, 1980, pp. 107–165Google Scholar
  9. Bray, R. C. The flavin and the other catalytic and redox centres of xanthine oxidase and related enzymes. In Massey, V. and Williams, C. H. (eds.)Flavin and Flavoproteins, Elsevier/North Holland, New York, 1982, pp. 777–785Google Scholar
  10. Chalmers, R. A., Parker, R., Simmonds, H. A., Snedden, W. and Watts, R. W. E. The conversion of allopurinol into oxipurinol in vivo in the absence of xanthine-oxygen oxidoreductase.Biochem. J. 112 (1969) 527–532Google Scholar
  11. Chappell, W. R., Megler, R. R., Moure-Eraso, R., Solomons, C. C., Tsongas, T. A., Walravens, P. A., and Winston, P. A.Human Health Effects of Molybdenum in Drinking Water, DPA-600/1-79-006, US Environmental Protection Agency, 1979Google Scholar
  12. Clare, D. A., Blakistone, B. A., Swaisgood, H. E. and Horton, H. R. Sulphydryl oxidase-catalyzed conversion of xanthine dehydrogenase to xanthine oxidase.Arch. Biochem. Biophys. 211 (1981) 44–47PubMedGoogle Scholar
  13. Cohen, H. J., Fridovich, I. and Rajagopalan, K. V. Hepatic sulphite oxidase. A functional role for molybdenum.J. Biol. Chem. 246 (1971) 367–373PubMedGoogle Scholar
  14. Coolbear, K. P., Herzberg, G. R. and Brosnan, J. T. Xanthine dehydrogenase in chicken liver: Its subcellular localization and its possible role in gluconeogenesis from amino acids.Biochem. Soc. Trans. 9 (1981) 394–395Google Scholar
  15. Coughlan, M. P. Aldehyde oxidase, xanthine oxidase and xanthine dehydrogenase. Hydroxylases containing molybdenum, iron-sulphur and flavin. In Coughlan, M. P. (ed.)Molybdenum and Molybdenum-containing Enzymes, Pergamon, Oxford, 1980, pp. 119–185Google Scholar
  16. Cramer, S. P., Wahl, R. and Rajagopalan, K. V. Molybdenum sites of sulphite oxidase and xanthine dehydrogenase. A comparison by EXAFS.J. Am. Chem. Soc. 103 (1981) 7721–7727Google Scholar
  17. Davies, J. I. and Grahn, M. F. Xanthine oxidase in adipose tissue. Potential effects on lipolytic activity.Biochem. Soc. Trans. 8 (1980) 363–364PubMedGoogle Scholar
  18. Della Corte, E., Gozzetti, G., Novello, F. and Stirpe, F. Properties of the xanthine oxidase from human liver.Biochim. Biophys. Acta, 191 (1969) 164–166PubMedGoogle Scholar
  19. De Renzo, E. C., Kaleita, E., Heytler, P. G., Oleson, J. J., Hutchings, B. L. and Williams, J. H. Identification of the xanthine oxidase factor as molybdenum.Arch. Biochem. Biophys. 45 (1953) 247–253PubMedGoogle Scholar
  20. Fridovich, I. Synergistic inhibition of xanthine oxidase by guanidinium plus thiocyanate.Arch. Biochem. Bophys. 109 (1965) 511–515Google Scholar
  21. Fridovich, I. Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase.J. Biol. Chem. 245 (1970) 4053–4057PubMedGoogle Scholar
  22. Greenlee, L. and Handler, P. Xanthine oxidase. Influence of pH on substrate specificity.J. Biol. Chem. 239 (1964) 1090–1095PubMedGoogle Scholar
  23. Hannson, R., Gustaffson, B., Jonsson, O. and Lundstam, S. Effect of xanthine oxidase on renal circulation after ischaemia.Transplant Proc. 14 (1982) 51–60Google Scholar
  24. Hewitt, E. J. Metabolism of micronutrient elements in plants.Biol. Rev. 34 (1959) 333–375Google Scholar
  25. Johns, D. G. Human liver aldehyde oxidase. Differential inhibition of oxidation of charged and uncharged substrates.J. Clin. Invest. 46 (1967) 1492–1505PubMedGoogle Scholar
  26. Johnson, J. L. The molybdenum cofactor common to nitrate reductase, xanthine dehydrogenase and sulphite oxidase. In Coughlan, M. P. (ed.)Molybdenum and Molybdenum-containing Enzymes. Pergamon, Oxford, 1980, pp. 345–383Google Scholar
  27. Johnson, J. L. and Rajagopalan, K. V. The oxidation of sulphite in animal systems. InSulphur in Biology, Ciba Foundation Symposium 72, Excerpta Medica, Elsevier/North-Holland, New York, 1980, 119–133Google Scholar
  28. Johnson, J. L. and Rajagopalan, K. V. The structural and metabolic relationship between the molybdenum cofactor and urothione.Proc. Natl. Acad. Sci. USA (1982), 6856–6860Google Scholar
  29. Johnson, J. L., Hainline, B. E. and Rajagopalan, K. V. Characterization of the molybdenum cofactor of sulphite oxidase, xanthine oxidase and nitrate reductase.J. Biol. Chem. 255 (1980a) 1783–1786PubMedGoogle Scholar
  30. Johnson, J. L., Waud, W. R., Rajagopalan, K. V., Duran, M., Beemer, F. A. and Wadman, S. K. Errors of molybdenum metabolism. Combined deficiencies of sulphite oxidase and xanthine dehydrogenase in a patient lacking the molybdenum cofactor.Proc. Natl. Acad. Sci. USA 77 (1980b) 3715–3719PubMedGoogle Scholar
  31. Julian, J. and Chytil, F. Participation of xanthine oxidase in the activation of liver tryptophan pyrrolase.J. Biol. Chem. 245 (1970) 1161–1168PubMedGoogle Scholar
  32. Krenitsky, T. A., Shannon, M. N., Elion, G. B. and Hitchings, G. H. A comparison of the specificities of xanthine oxidase and aldehyde oxidase.Arch. Biochem. Biophys. 150 (1972) 585–599PubMedGoogle Scholar
  33. Krenitsky, T. A., Tuttle, J. V., Cattau, E. L. and Wang, P. A comparison of the distribution and electron acceptor specificites of xanthine oxidase and aldehyde oxidase.Comp. Biochem. Physiol. 49B (1974) 687–703Google Scholar
  34. Lee, H. and Fisher, A. G. Bovine thyroidal xanthine oxidase.Int. J. Biochem. 9 (1978) 559–566PubMedGoogle Scholar
  35. Lynch, R. E. and Fridovich, I. Autoinactivation of xanthine oxidase. The role of superoxide radical and hydrogen peroxide.Biochim. Biophys. Acta 571 (1979) 195–200PubMedGoogle Scholar
  36. Mahler, H. R., Mackler, B., Green, D. E. and Bock, R. M. Aldehyde oxidase. A molybdoflavoprotein.J. Biol. Chem. 210 (1954) 465–480PubMedGoogle Scholar
  37. Massey, V. Iron-sulphur flavoprotein hydroxylases. In Lovenberg, W. (ed.)Iron-sulphur Proteins, Vol. 1, Academic Press, New York, 1973, pp. 301–360Google Scholar
  38. Mills, C. F. and Bremner, I. Nutritional aspects of molybdenum in animals. In Coughlan, M. P. (ed.)Molybdenum and Molybdenum-containing Enzymes, Pergamon, Oxford, 1980, pp. 517–542Google Scholar
  39. Murray, K. N., Watson, J. G. and Chaykin, S. Catalysis of the direct transfer of oxygen from nicotinamide N-oxide to xanthine by xanthine oxidase.J. Biol. Chem. 241 (1966) 4798–4801PubMedGoogle Scholar
  40. Nason, A., Lee, K.-Y., Pan S.-S., Ketchum, P. A., Lamberti, A. and DeVries, T. In vitro formation of assimilatory reduced nicotinamide adenine dinucleotide phosphate: nitrate reductase from a Neurospora mutant and a component of molybdenum enzymes.Proc. Natl. Acad. Sci. USA 68 (1971) 3242–3246PubMedGoogle Scholar
  41. Palmer, G. and Olson, J. S. Concepts and approaches to the understanding of electron transfer processes in enzymes containing multiple redox centres. In Coughlan, M. P. (ed.)Molybdenum and Molybdenum-containing Enzymes, Pergamon, Oxford, 1980, pp. 187–220Google Scholar
  42. Pateman, J. A., Cove, D. J., Rever, B. M. and Roberts, D. B. A common cofactor for nitrate reductase and xanthine dehydrogenase which also regulates the synthesis of nitrate reductase.Nature (London) 201 (1964) 58–60PubMedGoogle Scholar
  43. Pope, M. T., Still, E. R. and Williams, R. J. P. A comparison between the chemistry and biochemistry of molybdenum and related elements. In Coughlan, M. P. (ed.)Molybdenum and Molybdenum-containing Enzymes, Pergamon, Oxford, 1980, pp. 1–40Google Scholar
  44. Rajagopalan, K. V. Sulphite oxidase (Sulphite: ferricytochrome c oxidoreductase). In Coughlan, M. P. (ed.)Molybdenum and Molybdenum-containing Enzymes, Pergamon, Oxford, 1980a, pp. 241–272Google Scholar
  45. Rajagopalan, K. V. Xanthine oxidase and aldehyde oxidase. In Jakoby, W. B. (ed.)Enzymatic Basis of Detoxication, Vol. 1, Academic Press, New York, (1980b) pp. 295–309Google Scholar
  46. Richert, D. A. and Westerfeld, W. W. Isolation and identification of the xanthine oxidase factor as molybdenum.J. Biol. Chem. 203 (1953) 915–923PubMedGoogle Scholar
  47. Riley, J. P. and Chester, R.Introduction to Marine Chemistry. Academic Press, New York, 1971Google Scholar
  48. Seegmiller, J. E. Hereditary xanthinuria. In Bondy, P. K. and Rosenberg, L. E. (eds.)Metabolic Control and Disease, Saunders, Philadelphia, 1980, pp. 777–937Google Scholar
  49. Steifel, E. I. Proposed molecular mechanism for the action of molybdenum in enzymes: Coupled proton and electron transfer.Proc. Natl. Acad. Sci. USA 70 (1973) 988–992PubMedGoogle Scholar
  50. Stiefel, E. I. Structures and spectra of molybdoenzyme active sites. In Coughlan, M. P. (ed.)Molybdenum and Molybdenum-containing Enzymes, Pergamon, Oxford, 1980, pp. 41–98Google Scholar
  51. Stiefel, E. I., Newton, W. E., Watt, G. D., Hadfield, K. L. and Bulen, W. A. Molybdoenzymes: The role of electrons, protons and dihydrogen.Adv. Chem. Ser. 162 (1977) 353–388Google Scholar
  52. Stohrer, G. and Brown, G. B. The reduction of purine N-oxides by xanthine oxidase.J. Biol. Chem. 244 (1969) 2498–2502PubMedGoogle Scholar
  53. Topham, R. W., Woodruff, J. H. and Walner, M. C. Purification and characterization of the intestinal promoter of Fe3+-transferrin formation.Biochemistry 20 (1981) 319–324PubMedGoogle Scholar
  54. Underwood, E. J.Trace Elements in Human and Animal Nutrition, 4th Edn., Academic Press, New York, 1977Google Scholar
  55. Wadman, S. K., Duran, M., Beemer, F. A., Cats, B. P., Johnson, J. L., Rajagopalan, K. V., Saudubray, J. M., Ogier, H., Charpentier, C., Berger, R., Smit, G. P. A., Wilson, J. and Krywawych, S. Absence of hepatic molybdenum cofactor: An inborn error of metabolism leading to a combined deficiency of sulphite oxidase and xanthine dehydrogenase.J. Inher. Metab. Dis. 6 Suppl. 1 (1983) 78–83PubMedGoogle Scholar
  56. Williams, R. J. P. and Wentworth, R. A. D. Molybdenum in enzymes.J. Less Common Metals, 36 (1974) 405–420Google Scholar
  57. Wyngaarden, J. B. Hereditary xanthinuria. In Stanbury, J. B., Wyngaarden, J. B. and Frederickson, D. S. (eds.)Metabolic Basis of Inherited Disease, McGraw-Hill, New York, 1978, pp. 1037–1044Google Scholar
  58. Vincent, S. P. Oxidation-reduction potentials of molybdenum and iron-sulphur centres in nitrate reductase from E. coli.Biochem. J. 177 (1979) 757–759PubMedGoogle Scholar

Copyright information

© SSIEM and MTP Press Limited 1983

Authors and Affiliations

  • M. P. Coughlan
    • 1
  1. 1.Department of BiochemistryUniversity CollegeGalwayIreland

Personalised recommendations