Advertisement

Anatomia Clinica

, Volume 6, Issue 1, pp 53–61 | Cite as

Biomechanical activity of the growth plate

Clinical incidences
  • F. Bonnel
  • A. Dimeglio
  • P. Baldet
  • P. Rabischong
Reviews of Clinical Anatomy

Summary

The authors analyze at several levels the biomechanical activity of the epiphyseal plate.

From a histologic point of view, they show the role played by the different cell layers in growth.

The rapid growth of long bones is well known in animals, not entirely in human beings. The factors involved in mechanical regulation of the epiphyseal plate are analyzed according to distraction and compression stresses. Other factors have also been reported (periosteum and muscle).

Analysis of the literature reveals that biomechanical activity and the factors managing growth are not well known yet.

A combined effort should be made to obtain better understanding of the surgical procedures carried out in pediatric orthopedics.

Key words

Epiphyseal plate Cell dynamics Biomechanics Growth regulation 

Comportement biomécanique du cartilage de croissance. Incidences cliniques

Résumé

Les auteurs analysent le comportement biomécanique du cartilage de croissance à plusieurs niveaux.

Sur le plan histologique ils montrent le rôle joué dans la croissance par les différentes couches cellulaires.

La vitesse de croissance des os longs est bien connue chez les animaux et difficile à apprécier chez l'homme. Les facteurs intervenant dans la régulation mécanique du cartilage sont analysés en fonction des contraintes en compression et en détraction. Les autres facteurs (périoste et muscle) sont rapportés.

L'analyse de la littérature montre combien le comportement mécanique et les facteurs régissant la croissance sont mal connus et mériteraient un effort de recherche conjugué pour mieux comprendre la portée des gestes chirurgicaux en orthopédie infantile.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson M, Green WT (1948) Lengths of the femur and the tibia. Norms derived from orthoroentgenograms of children from 5 years of age until epiphysial closure. Am J Dis Child 75:279–290Google Scholar
  2. 2.
    Bonnel F, Peruchon E, Baldet P, Rabischong P (1980) Comportement mécanique du cartilage de conjugaison. Etude expérimentale en compression. Rev Chir Orthop 66:417–421PubMedGoogle Scholar
  3. 3.
    Bonnel F, Peruchon E, Baldet P, Rabischong P (1980) Evaluation and control of growth activity of epiphyseal plate. Med Biol Eng Comp 54:396–400Google Scholar
  4. 4.
    Bonucci E (1970) Fine structure and histochemistry of calcifying globules in epiphyseal cartilage. Z Zellforsch 103:192PubMedGoogle Scholar
  5. 5.
    Blount WP, Clarke GR (1949) Control of bone growth by epiphyseal stapling. A preliminary report. J Bone Joint Surg [Am] 31:464Google Scholar
  6. 6.
    Brighton CT, Ray RD, Soble LW, Kuettner KE (1969) In vitro epiphyseal-plate growth in various oxygen tensions. J Bone Joint Surg [Am] 51:1383–1396Google Scholar
  7. 7.
    Chalmers J (1965) A study of some factors controlling growth of transplanted skeletal tissue. Calcified tissues. LJ Richelle, MJ Dallemagne (eds) University of Liege, p 177Google Scholar
  8. 8.
    Carey EJ (1922) Direct observations on the transformation of the mesenchyme in the thigh of the pig embryo (sus scrofa) with special reference of the genesis of the thigh muscles, of the knee and hip-joints and of the primary bone of the femur. J Morphol 37:1–78Google Scholar
  9. 9.
    Chung S (1976) Shear strength of the human femoral capital epiphysel plate. J Bone Joint Surg [Am] 58:94–103Google Scholar
  10. 10.
    Crilly RG (1972) Longitudinal overgrowth of chicken radius. J Anat 112:11–18PubMedGoogle Scholar
  11. 11.
    Duben W (1956) Tierexperimentelle Untersuchungen über das weitere Verhalten temporär gebremster Wachstumsfugen. Bruns' Beitr Klin Chir 193:291–297Google Scholar
  12. 12.
    Dale GG, Martin WR (1958) Progressis of epiphyseal reparation. J Bone Joint Surg [Br] 40:116–122Google Scholar
  13. 13.
    Elo JO (1960) The effect of subperiosteally implanted autogeneous whole-thickness skin graft on growing bone. An experimental study. Acta Orthop Scand (suppl) 45Google Scholar
  14. 14.
    Ehrlich MG, Mankin HJ, Treadwell BV (1972) Biochemical and physiological events during closure of the stapled distal femoral epiphyseal plate in rats. J Bone Joint Surg [Am] 54:309–322Google Scholar
  15. 15.
    Fell HB, Dingle AT: Studies on the mode of action of excess of vitamin A. 6. Lysosomal protease and the degradation of cartilage matrix. Biochem J 87:403–408Google Scholar
  16. 16.
    Fishbame B (1976) Continuous transphyseal traction. The Johns Hopkins Med J 138:79–81Google Scholar
  17. 17.
    Frost HM (1961) Measurement of the biological half-life of bones with the aid of Tetracyclines. Henry Ford Hospital Bulletin 9:87Google Scholar
  18. 18.
    Gatewood Mullen, BP (1927) Experimental observations on the growth of long bones. Arch Surg 15:215–221Google Scholar
  19. 19.
    Gelbke H (1951) The influence of pressure and tension on growing bone in experiments with animals. J Bone Joint Surg [Am] 33:947–954Google Scholar
  20. 20.
    Haas SL (1945) Retardation of bone growth by a wire loop. J Bone Joint Surg [Am] 27:25–36Google Scholar
  21. 21.
    Haas SL (1950) Restriction of bone growth by pins through the epiphyseal cartilaginous plate. J Bone Joint Surg [Am] 32:338–343Google Scholar
  22. 22.
    Hall Craggs E (1968) The effect of experimental epiphysiodesis on growth in length of the rabbit tibia. J Bone Joint Surg [Br] 50:392–400Google Scholar
  23. 23.
    Hansson LI (1964) Determination of endochondral bone growth in rabbit by means of oxytetracycline. Acta Univ Lund sectio II, n∮1Google Scholar
  24. 24.
    Harris WH, Jackson RH, Jowsey J (1962) The “in vivo” distribution of tetracyclines in canine. J Bone Joint Surg [Am] 44:1308Google Scholar
  25. 25.
    Hert J (1969) Acceleration of the growth after decrease of load on epiphyseal plates of spring distractors. Folia Morphol (Warsz) 17:194–203Google Scholar
  26. 26.
    Houghton GR, Duriez J (1980) Allongement tibial par élongation du cartilage de croissance tibial supérieur. Rev Chir Orthop 66:351–356PubMedGoogle Scholar
  27. 27.
    Hueter C (1862) Anatomische Studien an den Extremitätengelenken Neugeborener und Erwachsener. Virchow's Arch 25:575–599Google Scholar
  28. 28.
    James JM, Musgrove JE (1949) Effect of arteriovenous fistula on growth of bone. Preliminary report. Proc Mayo Clin 24:405Google Scholar
  29. 29.
    Keith A (1920) Studies on the anatomical changes which accompany growth-disorders of the human body. J Anat 54:101–115Google Scholar
  30. 30.
    Kember NF (1972) Comparative patterns of cell division epiphyseal cartilage in the rat. J Anat 111:137–142PubMedGoogle Scholar
  31. 31.
    Lacroix P (1947) Excitation de la croissance en longueur du tibia par décollement de son périoste diaphysaire. Rev Orthop 33:3–6Google Scholar
  32. 32.
    Langenskold A (1947) Normal and pathological bone growth in the light of the development of cartilaginous foci in chondrodysplasia. Acta Chir Scand 95:367–386Google Scholar
  33. 33.
    Leblond CP, Greulich RC (1961) Au toradiographic studies of bone formation and growth. In: GH Bourne (ed) the biochemstry and physiology of bone. Academic press, New York, pp 325–358Google Scholar
  34. 34.
    Monticelli G, Spinelli R (1981) Distraction epiphysiolysis as a method of Circel lengthening. Clin Orthop 154:254–277PubMedGoogle Scholar
  35. 35.
    Milch RA, Rall DP, Tobie JE (1958) Fluorescence of tetracycline antibiotics in bone. J Bone Joint Surg [Am] 40:897–910Google Scholar
  36. 36.
    Muller H (1858) Über die Entwicklung der Knochensubstanz nebst Bemerkungen über den Bau rachistischer Knochen. Z Wissensch Zool 9:147–233Google Scholar
  37. 37.
    Pease CN (1952) Local stimulation of growth of long bones. A preliminary report. J Bone Joint Surg [Am] 34:1–24Google Scholar
  38. 38.
    Persson BM (1968) Growth in length of bones in change of oxygen and carb dioxide tensions. Acta Orthop Scand (suppl) 117Google Scholar
  39. 39.
    Pratt CWM, Mc Cance RA: Severe undernutrition in growing and adult animals. 12. The extremities of the long bones in pigs.Google Scholar
  40. 40.
    Pouliquen JC, Chaboche P et al. (1980) Etude expérimentale sur le cartilage de croissance et les parties molles de l'allongement progressif du fémur chez le lapin en période de croissance. Chir Pediatr 21:363–367PubMedGoogle Scholar
  41. 41.
    Pous JG, Dimeglio A, Bonnel F, Baldet P: Cartilage de conjugaison et croissance. Doin, Paris, 308 pGoogle Scholar
  42. 42.
    Ranvier L (1967) Traité technique d'histologie. Paris. Quoted by Langenkiöd, Rytömaa and Videman.Google Scholar
  43. 43.
    Ryoppy S: Transplantation of epiphyseal cartilage and cranical suture. Experimental studies on the preservation of the growth capacity in growing bone grafts. Acta Orthop Scand (suppl) 82Google Scholar
  44. 44.
    Shapiro F (1977) Organisation and cellular biology of the perichondrial ossification groove of Ranvier. J Bone Joint Surg [Am] 59:703–723Google Scholar
  45. 45.
    Siffert RS (1956) The effects of staples and longitudinal wires on epihyseal growth. An experimental study. J Bone Joint Surg [Am] 38:1077–1088Google Scholar
  46. 46.
    Sijbrandij S (1963) Inhibition of tibial growth by means of compression of its proximal epiphysial disc in the rabbit. Acta Anat 55:278–285PubMedGoogle Scholar
  47. 47.
    Silbermann M, Kedar T (1976) Quantitative changes in the cellular population of the growth plate of triamcinol one-treated mice. Acta Anat 97:396–400Google Scholar
  48. 48.
    Sissons HA (1953) Experimental determination of rate longitudinal bone growth. J Anat 87:228–236PubMedGoogle Scholar
  49. 49.
    Solomon L (1966) Diametric growth of the epiphyseal plate. J Bone Joint Surg [Br] 48:170–177Google Scholar
  50. 50.
    Strobino LJ, French GO, Colonna PC (1952) The effect of increasing tension on the growth of epiphyseal bone. Surg Gynecol Obstet 95:694–700PubMedGoogle Scholar
  51. 51.
    Tschantz P, Rutishauser E (1967) La surcharge mécanique de l'os vivant. Ann Anat Pathol 12:233–248Google Scholar
  52. 52.
    Trueta, Joseph, Amato VP (1960) The vascular contribution to osteogenisis. II. Changes in the growth cartilage caused by experimentally induced ischaemia. J Bone Joint Surg [Br] 42:571–587Google Scholar
  53. 53.
    Volkmann R (1869) Die Krankheiten der Bewegungsorgane. In: F Pitas, CAT Billoth (eds) Handbuch der allgemeinen und speciellen Chirurgie, Bd II, Abt 1. Ferdinand Enken, Erlangen, pp 350–351Google Scholar
  54. 54.
    Wolff J (1882) Das Gesetz der Transformation der Knochen. August Hirschwald, Berlin. A I P Inserm n∮ 42 76 74Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • F. Bonnel
    • 1
  • A. Dimeglio
    • 2
  • P. Baldet
    • 3
  • P. Rabischong
    • 4
  1. 1.Unité de Recherche BiomécaniqueINSERM U 103, Secteur Orthopédie Traumatologie Chirurgie B, Hôpital St-EloiMontpellierFrance
  2. 2.Service de Chirurgie Infantile, CHU St-Charles, Unité de Recherche BiomécaniqueINSERM U 103MontpellierFrance
  3. 3.Laboratoire d'Anatomie PathologiqueGui-de-ChauliacMontpellierFrance
  4. 4.Laboratoire d'Anatomie Normale, Unité de Recherche BiomécaniqueINSERM U 103MontpellierFrance

Personalised recommendations