International Journal of Theoretical Physics

, Volume 16, Issue 8, pp 561–565 | Cite as

Solutions of the Maxwell and Yang-Mills equations associated with hopf fibrings

  • Andrzej Trautman


It is shown that the magnetic pole of lowest strength and the pseudoparticle solution of the Yang-Mills equations correspond to natural connections defined on the principal bundlesU(2)/U(1)=S 3S 2 andSp(2)/Sp(1)=S 7S 4, respectively. This observation leads to a general methods of constructing new, topologically nontrivial solutions of the Maxwell and Yang-Mills equations. Among them is an “electromagnetic instanton” defined over the two-dimensional complex projective space endowed with the Fubini-Study metric.


Projective Space Gauge Field Magnetic Pole Bianchi Identity Principal Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belavin, A. A., Polyakov, A. M., Schwartz, A. S., and Tyupkin, Yu. S. (1975).Physics Letters,59B, 85.ADSMathSciNetGoogle Scholar
  2. Callan, C. G. Jr., Dashen, R. F., and Gross, D. J. (1976).Physics Letters,63B, 334.ADSGoogle Scholar
  3. Chern, S. S. (1967).Complex manifolds without potential theory. Van Nostrand, New York.zbMATHGoogle Scholar
  4. Dirac, P. A. M. (1931).Proceedings of the Royal Society of London,A133, 60.CrossRefADSGoogle Scholar
  5. Eguchi, T. and Freund, P. G. O. (1976).Physical Review Letters,37, 1251.CrossRefADSMathSciNetGoogle Scholar
  6. Ezawa, Z. F. and Tze, H. C. (1976).Journal of Mathematical Physics,17, 2228; and the papers quoted there.CrossRefADSMathSciNetGoogle Scholar
  7. Finkelstein, D., Jauch, J. M., Schiminovich, S., and Speiser, D. (1963).Journal of Mathematical Physics,4, 788.zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. Goldhaber, A. S. (1976).Physical Review Letters,36, 1122.CrossRefADSGoogle Scholar
  9. Goldhaber, A. S. and Smith, J. (1975).Reports on Progress in Physics,38, 731 (1975).CrossRefADSGoogle Scholar
  10. Greenberg, M. J. (1967).Lectures on Algebraic Topology, W. A. Benjamin, Reading, Massachusetts.zbMATHGoogle Scholar
  11. Hofft, G.'t (1976a).Physical Review Letters,37, 8; (1976b).Physical Review,D14, 3432.CrossRefADSGoogle Scholar
  12. Hopf, H. (1931).Mathematische Annalen,104, 637.CrossRefMathSciNetGoogle Scholar
  13. Husemoller, D. (1966).Fibre Bundles. McGraw-Hill Book Co., New York.zbMATHGoogle Scholar
  14. Jackiw, R. and Rebbi, C. (1976a).Physical Review Letters 37, 172.CrossRefADSGoogle Scholar
  15. Jackiw, R. and Rebbi, C. (1976b).Physical Review D,14, 517.CrossRefADSMathSciNetGoogle Scholar
  16. Lubkin, E. (1963).Annals of Physics,23, 233.CrossRefADSMathSciNetGoogle Scholar
  17. Morrow, J. and Kodaira, K. (1971).Complex Manifolds. Holt, Rinehart and Winston, Inc., New York.zbMATHGoogle Scholar
  18. Nambu, Y. (1974).Physical Review D,10, 4262.CrossRefADSGoogle Scholar
  19. Parker, L. (1975).Physical Review Letters,34, 412.CrossRefADSGoogle Scholar
  20. Steenrod, N. (1951).The Topology of Fibre Bundles. Princeton University Press, Princeton, New Jersey.zbMATHGoogle Scholar
  21. Trautman, A. (1970).Reports on Mathematical Physics (Toruń),1, 29.zbMATHCrossRefMathSciNetGoogle Scholar
  22. Weil, A. (1958).Introduction à l'étude des variétés kähleriennes, Hermann, Paris.zbMATHGoogle Scholar
  23. Wu, T. T. and Yang, C. N. (1975).Physical Review D,12, 3845.CrossRefADSMathSciNetGoogle Scholar
  24. Wu, T. T. and Yang, C. N. (1976).Physical Review D,14, 437 (1976).CrossRefADSMathSciNetGoogle Scholar
  25. Yang, C. N. (1977).Physical Review D, (to be published).Google Scholar
  26. Yang, C. N. and Mills, R. L. (1954).Physical Review,96, 191CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Andrzej Trautman
    • 1
  1. 1.Institute for Theoretical PhysicsState University of New York at Stony BrookStony Brook

Personalised recommendations