Journal of Molecular Evolution

, Volume 18, Issue 2, pp 102–108

Hemoglobins, XLVIIII

The Primary Structure of a Monomeric Hemoglobin from the Hagfish,Myxine glutinosa L.: Evolutionary Aspects and Comparative Studies of the Function with Special Reference to the Heme Linkage
  • Gisela Liljeqvist
  • Sven Paléus
  • Gerhard Braunitzer


Hagfish hemoglobin has three main components, one of which is Hb III. It is monomeric and consists of 148 amino acid residues (M = 17 350). Its complete primary structure, previously published, is discussed here. The proximal amino acid (F8) of the heme linkage is histidine as always in the hemoglobins, but the regularly expected distal histidine E7 is substituted by glutamine. This substitution, leading to a new kind of heme linkage, has hitherto only been demonstrated in opossum hemoglobin. It is suggested that E7, Gln, is directed out of the heme pocket, and that the adjacent Ell, Ile, is directed toward the inside of the pocket, giving the distal heme contact instead of histidine.Myxine Hb III has an additional tail of 9 amino acid residues at its N-terminal end, as has the hemoglobin ofLampetra fluviatilis. The genetic codes ofMyxine andLampetra hemoglobins show 117 differences, in spite of many morphological resemblances between hagfish and lamprey. Their primary hemoglobin structures show differences substantial enough to bo compatible with the divergence of the two families some 400–500 million years ago.

Key words

Hemoglobin Myxine glutinosa Primary structure Heme linkage Phylogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauer C, Engels U, Paléus S (1975) Nature 256:66–68PubMedGoogle Scholar
  2. Braunitzer G, Fujiki H (1969) Naturwissenschaften 56:322–323PubMedGoogle Scholar
  3. Braunitzer G, Schrank B, Stangl A, Bauer C (1978a) Hoppe-Seyler's Z Physiol Chem 359:547–558PubMedGoogle Scholar
  4. Braunitzer G, Schrank B, Stangl A, Scheithauer U (1978b) Hoppe-Seyler's Z Physiol Chem 359:137–146PubMedGoogle Scholar
  5. Braunitzer G, Gehring-Müller R, Hilschmann N, Hilse K, Hobom G, Rudloff V, Wittmann-Liebold B (1961) Hoppe-Seyler's Z Physiol Chem 325:283–286Google Scholar
  6. Briehl R (1963) J Biol Chem 238:2361–2366Google Scholar
  7. Buse G, Braig S, Braunitzer G (1969) Hoppe-Seyler's Z Physiol Chem 350:1686–1690PubMedGoogle Scholar
  8. Chauvet JP, Acher R (1970a) FEBS Lett 8:263–264PubMedGoogle Scholar
  9. Chauvet JP, Acher R (1970b) FEBS Lett 9:202–204PubMedGoogle Scholar
  10. Edmundson AB (1965) Nature 205:883–887Google Scholar
  11. Fermi G (1975) J Mol Biol 97:237–256PubMedGoogle Scholar
  12. Gerald PS, Efron ML (1961) Proc Natl Acad Sci USA 47:1758–1767PubMedGoogle Scholar
  13. Hendrickson WA, Love WE, Karle J (1973) J Mol Biol 74:331–361PubMedGoogle Scholar
  14. Hilse K, Braunitzer G (1968) Hoppe-Seyler's Z Physiol Chem 349:433–450PubMedGoogle Scholar
  15. Huber R, Epp O, Steigemann W, Formanek H (1971) Eur J Biochem 19:42:50Google Scholar
  16. Hunt LT, Dayhoff MO (1976) In: Dayhoff MO (ed) Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, Georgetown University Medical Center, Washington, D.C. 20007, pp 191–233Google Scholar
  17. Hörlein H, Weber G (1948) Dtsch Med Wochenschr 39:476–478Google Scholar
  18. Imamura T, Baldwin TO, Riggs A (1972) J Biol Chem 247:2785–2797PubMedGoogle Scholar
  19. Isaacks RE, Kim HD, Harkness DR (1978) Can J Zool 56:887–890Google Scholar
  20. Jarvik E (1964) Ann Soc Roy Zool Belgique 94:11–95Google Scholar
  21. Kleinschmidt T, Braunitzer G (1976) Hoppe-Seyler's Z Physiol Chem 357:1805–1808PubMedGoogle Scholar
  22. Li SL, Riggs A (1970) J Biol Chem 245:6149–6169PubMedGoogle Scholar
  23. Li SL, Riggs A (1972) J Mol Evol 1:208–210Google Scholar
  24. Liljeqvist G, Braunitzer G, Paléus S (1979) Hoppe-Seyler's Z Physiol Chem 360:125–135PubMedGoogle Scholar
  25. Manwell C (1963) In: Brodal A and Fänge R (eds) The Biology ofMyxine. Universitetsforlaget, Oslo, Norway, pp 372–455Google Scholar
  26. Muirhead H, Perutz MF (1963) Nature 199:633–638PubMedGoogle Scholar
  27. Muller CJ, Kingma S (1961) Biochim Biophys Acta 50:595PubMedGoogle Scholar
  28. Nash AR, Fisher WK, Thompson EOP (1976) Aust J Biol Sci 29:73–97PubMedGoogle Scholar
  29. Padlan EA, Love WE (1974) J Biol Chem 249:4067–4078PubMedGoogle Scholar
  30. Paléus S, Vesterberg O (1966) Intern SympComparative Hemoglobin Structure, Thessaloniki, 11–13 April 1966, M. Triantafylou, Thessaloniki, pp 149–150Google Scholar
  31. Paléus S, Liljeqvist G (1972) Comp Biochem Physiol 42B:611–617Google Scholar
  32. Paléus S, Vesterberg O, Liljeqvist G (1971) Comp Biochem Physiol 39B:551–557Google Scholar
  33. Perutz MF (1976) Br Med Bull 32:195–208PubMedGoogle Scholar
  34. Perutz MF, Lehmann H (1968) Nature 219:902–909PubMedGoogle Scholar
  35. Perutz MF, Muirhead H, Cox JM, Goaman LCG (1968) Naure 219:131–139Google Scholar
  36. Quast R, Paléus S, Bloom G, Östlund E (1969) Acta Chem Scand 23:3595–3596PubMedGoogle Scholar
  37. Romero Herrera AE, Lehmann H (1974) Biochim Biophys Acta 336:318–323Google Scholar
  38. Sladić-Simić D, Kleinschmidt T, Braunitzer G (1977) Hoppe-Seyler's Z Physiol Chem 358:591–594PubMedGoogle Scholar
  39. Steigemann W, Weber E (1979) J Mol Biol 127:309–338PubMedGoogle Scholar
  40. Stensiö E (1958) Traité de Zoologie 13:173–425Google Scholar
  41. Stenzel P, Brimhall B, Jones R, Black J, Mc Lachlan A, Gibson D (1979) J Biol Chem 254:2071–2076PubMedGoogle Scholar
  42. Svedberg T, Eriksson-Quensel IB (1934) J Am Chem Soc 56:1700–1706Google Scholar
  43. Takano T (1977) J Mol Biol 110:537–568PubMedGoogle Scholar
  44. Tentori L, Vivaldi G, Carta S, Marinucci M, Massa A, Antonini E, Brunori M (1973) Int J Peptide Protein Res 5:187–200Google Scholar
  45. Tucker PW, Phillips SEV, Perutz MF, Houtchens RA, Caughey WS (1978) In: Caughey WS (ed) Biochemical and Clinical Aspects of Hemoglobin Abnormalities. Academic Press, pp 1–15Google Scholar
  46. Wald G, Riggs A (1951) J Gen Physiol 35:45–53PubMedGoogle Scholar
  47. Zelenik M, Rudloff V, Braunitzer G (1979) Hoppe-Seyler's Z Physiol Chem 360:1879–1894PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Gisela Liljeqvist
    • 1
  • Sven Paléus
    • 1
  • Gerhard Braunitzer
    • 1
  1. 1.Max-Planck-Institut für BiochemieAbteilung ProteinchemieMartinsried bei MünchenFederal Republic of Germany
  2. 2.Färnebogatan 64IXFarstaSweden
  3. 3.Rosenlunds SjukhusStockholmSweden

Personalised recommendations