Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Electrical energy sources for organic synthesis on the early earth

  • 167 Accesses

  • 41 Citations

Abstract

In 1959, Miller and Urey (Science 130, 245) published their classic compilation of energy sources for indigenous prebiotic organic synthesis on the early Earth. Much contemporary origins of life research continues to employ their original estimates for terrestrial energy dissipation by lightning and coronal discharges, 2 × 1019 J yr−1 and 6 × 1019 J yr−1, respectively. However, more recent work in terrestrial lightning and point discharge research suggests that these values are overestimates by factors of about 20 and 120, respectively. Calculated concentrations of amino acids (or other prebiotic organic products) in the early terrestrial oceans due to electrical discharge sources may therefore have been equally overestimated. A review of efficiencies for those experiments that provide good analogues to naturally-occurring lightning and coronal discharges suggests that lightning energy yields for organic synthesis (nmole J−1) are about one order of magnitude higher than those for coronal discharge. Therefore organic production by lightning may be expected to have dominated that due to coronae on early Earth. Limited data available for production of nitric oxide in clouds suggests that coronal emission within clouds, a source of energy heretofore too uncertain to be included in the total coronal energy inventory, is insufficient to change this conclusion. Our recommended valves for lightning and coronal discharge dissipation rates on the early Earth are, respectively, 1 × 1018 J yr−1 and 5 × 1017 J yr−1.

This is a preview of subscription content, log in to check access.

References

  1. Bar-Nun, A., Bar-Nun, N., Bauer, S. H., and Sagan, C.: 1970,Science 168, 470.

  2. Bell, A.: 1967, in R. F. Baddour and R. S. Timmins (eds.),The Application of Plasmas to Chemical Processing, M.I.T. Press, Cambridge, MA, p. 1.

  3. Berger, K.: 1977, in R. H. Golde (ed.),Lightning, Academic, New York, p. 119.

  4. Bhetanabhotla, M. N., Crowell, B. A., Coucouvinos, A., Hill, R. D., and Rinker, R. G.: 1985,Atmospheric Environment 19, 1391.

  5. Borucki, W. J. and Chameides, W. L.: 1984,Rev. Geophys. Space Phys. 22, 363.

  6. Borucki, W. J., McKay, C. P., and Whitten, R. C.: 1984,Icarus 60, 260.

  7. Borucki, W. J., Giver, L. P., McKay, C. P., Scattergood, T., and Parris, J. E.: 1988,Icarus 76, 125.

  8. Briner, E. and Baerfuss, A.: 1919,Helv. Chim. Acta 2, 663.

  9. Briner, E., Desbaillets, J., and Paillard, H.: 1938,Helv. Chim. Acta 21, 115.

  10. Brown, S. C.: 1966,Introduction to Electrical Discharges in Gases, John Wiley & Sons, New York.

  11. Chalmers, J. A.: 1951,J. Atmos. Terr. Phys. 2, 301.

  12. Chalmers, J. A.: 1967,Atmospheric Electricity, Pergamon, Oxford.

  13. Chameides, W. L. and Walker, J. C. G.: 1981,Origins of Life 11, 291.

  14. Chameides, W. L., Stedman, D. H., Dickerson, R. R., Rusch, D. W., and Cicerone, R. J.: 1977,J. Atmos. Sci. 34, 143.

  15. Chameides, W. L., Davis, D. D., Bradshaw, J., Rodgers, M., Sandholm, S., and Bai, D. B.: 1987,J. Geophys. Res. 92, 2153.

  16. Chyba, C. and Sagan, C.: 1991,Nature, submitted.

  17. Darnell, J., Lodish, H. and Baltimore, D.: 1990,Molecular Cell Biology, 2nd ed., Freeman, New York, p. 1051.

  18. Darrow, K. K.: 1932,Electrical Phenomena in Gases, Williams & Wilkins, Baltimore.

  19. Dawson, G. A.: 1980,J. Atmos. Sci. 37, 174.

  20. Day, W.: 1984,Genesis on Planet Earth, Yale University Press, New Haven.

  21. Dose, K.: 1972, In B. Grzimek (ed.),Grzimek's Encyclopedia of Evolution, Van Nostrand-Reinhold, New York, p. 97.

  22. Ette, A. I. I. and Utah, E. U.: 1973,J. Atmos. Terr. Phys. 35, 785.

  23. Fox, S. W. and Dose, K.: 1972,Molecular Evolution and the Origin of Life, W. H. Freeman, San Francisco.

  24. Guo, C. and Krider, E. P.: 1982,J. Geophys. Res. 87, 8913.

  25. Hill, R. D.: 1979a,Rev. Geophys. Space Phys. 17, 155.

  26. Hill, R. D.: 1979b,Geophys. Res. Lett. 6, 945.

  27. Hill, R. D.: 1987,Phys. Fluids 30, 2585.

  28. Hill, R. D., Rinker, R. G. and Wilson, H. D.: 1980,J. Atmos. Sci. 37, 179.

  29. Hill, R. D., Rinker, R. G. and Coucouvinos, A.: 1984,J. Geophys. Res. 89, 1411.

  30. Hill, R. D., Rahmim, I., and Rinker, R. G.: 1988,Ind. Eng. Chem. Res. 27, 1264.

  31. Latham, J.: 1975,Nature 256, 34.

  32. Latham, J. and Stromberg, I. M.: 1977, in R. H. Golde (ed.),Lightning, Academic, New York, p. 99.

  33. McTaggart, F. K.: 1967,Plasma Chemistry in Electrical Discharges, Elsevier, New York.

  34. Miller, S. L. and Urey, H. C.: 1959,Science 130, 245.

  35. Miller, S. L. and Orgel, L. E.: 1974,The Origins of Life on Earth, Prentice-Hall, Englewood Cliffs, New Jersey.

  36. Miller, S. L., Urey, H. C., and Oró, J.: 1976,J. Mol. Evol. 9, 59.

  37. Moore, C. B. and Vonnegut, B.: 1977, in R. H. Golde (ed.),Lightning, Academic, New York, p. 51.

  38. Oró, J., Miller, S. L., and Lazcano, A.: 1990,Ann. Rev. Earth Planet. Sci. 18, 317.

  39. Orville, R. E. and Spencer, D. W.: 1979,Mon. Weather Rev. 107, 934.

  40. Paxton, A. H., Gardner, R. L., and Baker, L.: 1986,Phys. Fluids 29, 2736.

  41. Penning, F. M.: 1957,Electrical Discharges in Gases, Macmillan, New York.

  42. Prentice, S. A.: 1977, in R. H. Golde (ed.),Lightning, Academic, New York, p. 465.

  43. Ridley, B. A., Carroll, M. A. and Gregory, G. L.: 1987,J. Geophys. Res. 92, 2025.

  44. Sagan, C. and Mullen, G.: 1972,Science 177, 52.

  45. Scattergood, T. W., McKay, C. P., Borucki, W. J., Giver, L. P., Van Ghyseghem, H., Parris, J. E., and Miller, S. L.: 1989,Icarus 81, 413.

  46. Schonland, B. F. J.: 1928,Proc. R. Soc. A 118, 252.

  47. Schonland, B. F. J.: 1953,Atmospheric Electricity, Methuen, London.

  48. Stribling, R. and Miller, S. L.: 1987,Origins of Life 17, 261.

  49. Strickberger, M. W.: 1990,Evolution, Jones and Bartlett, Boston.

  50. Stromberg, I. M.: 1971,J. Atmos. Terr. Phys. 33, 485.

  51. Thompson, W. R., Henry, T. J., Schwartz, J. M., Khare, B. N., and Sagan, C.: 1991,Icarus 90, 57.

  52. Toland, R. B. and Vonnegut, B.: 1977,J. Geophys. Res. 82, 438.

  53. Turman, B. N. and Edgar, B. C.: 1982,J. Geophys. Res. 87, 1191.

  54. Uman, M. A.: 1969,Lightning, McGraw-Hill, New York.

  55. Uman, M. A. and Krider, E. P.: 1989,Science 246, 457.

  56. Vorpahl, J. A., Sparrow, J. G., and Ney, E. P.: 1970,Science 169, 860.

  57. Walker, J. C. G.: 1986,Origins of Life 16, 117.

  58. Zahnle, K. J. and Walker, J. C. G.: 1982,Rev. Geophys. Space Phys. 20, 280.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chyba, C., Sagan, C. Electrical energy sources for organic synthesis on the early earth. Origins Life Evol Biosphere 21, 3–17 (1991). https://doi.org/10.1007/BF01809509

Download citation

Keywords

  • Nitric Oxide
  • Dissipation Rate
  • Organic Synthesis
  • Coronal Discharge
  • Point Discharge