Origin of genetically encoded protein synthesis: A model based on selection for RNA peptidation

  • J. Tze-Fei Wong


The difficulty in explaining the origin of genetic coding centres on the need to identify selective advantages that could account for the synthesis of peptidyl-tRNA, the essential intermediate in genetically programmed translation. It is resolved by a recognition of the functional advantages derivable from the post-transcriptional addition of peptide cofactors to RNA apo-catalysts. This enables the formulation of a theory for the origin of the genetic encoding of protein synthesis by RNA.


Peptide Organic Chemistry Geochemistry Protein Synthesis Genetic Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cech, T. R. and Bass, B.: 1986,Annu. Rev. Biochem. 55, 599–629.PubMedGoogle Scholar
  2. [2]
    Darnell, J. E. and Doolittle, W. F.: 1986,Proc. Natl. Acad. Sci. U.S.A. 83, 1271–1275.PubMedGoogle Scholar
  3. [3]
    Gilbert, W.: 1986,Nature 319, 618.Google Scholar
  4. [4]
    Orgel, L. E.: 1989,J. Mol. Evol. 29, 465–474.PubMedGoogle Scholar
  5. [5]
    Weiner, A. M. and Maizels, N.: 1987,Proc. Natl. Acad. Sci. U.S.A. 84, 7383–7387.PubMedGoogle Scholar
  6. [6]
    White III, H. B.: 1976,J. Mol. Evol. 7, 101–104.Google Scholar
  7. [7]
    Bujalowski, W. and Porschke, D.: 1988,Biophys. Chem. 30, 151–157.PubMedGoogle Scholar
  8. [8]
    Yarus, M.: 1988,Science 240, 1751–1758.PubMedGoogle Scholar
  9. [9]
    Wachtershauser, G.: 1988,Microbiol. Rev. 52, 452–484.PubMedGoogle Scholar
  10. [10]
    Wong, J. T.: 1975,Proc. Natl. Acad. Sci. U.S.A. 72, 1909–1912.PubMedGoogle Scholar
  11. [11]
    Wong, J. T.: 1976,Proc. Natl. Acad. Sci. U.S.A. 73, 2336–2340.PubMedGoogle Scholar
  12. [12]
    Wong, J. T.: 1981,Trends Biochem. Sci. 6, 33–35.Google Scholar
  13. [13]
    Wong, J. T.: 1984, in Ricard, J. and Cornish-Bowden, A. (eds.),Dynamics of Biochemical Systems, Plenum Press, New York pp. 247–258.Google Scholar
  14. [14]
    Wong, J. T.: 1988,Microbiol. Sci. 5, 174–181.PubMedGoogle Scholar
  15. [15]
    Uy, R. and Wold, F.: 1977,Science 198, 890–896.PubMedGoogle Scholar
  16. [16]
    Towler, D. A. and Gordon, J. I.: 1988,Annu. Rev. Biochem. 57, 69–99.PubMedGoogle Scholar
  17. [17]
    Reichard, P. and Ehrenberg, A.: 1983,Science 221, 514–519.PubMedGoogle Scholar
  18. [18]
    Muramatsu, T., Nishikawa, K., Nemoto, F., Kuchion, Y., Nishimura, S., Miyazawa, T., and Yokoyama, S.: 1988,Nature 336, 179–181.PubMedGoogle Scholar
  19. [19]
    Nishimura, S.: 1979, in Schimmel, P. R., Soll, D., and Abelson, J. N. (eds.),Transfer RNA: Structure, Properties and Recognition, Cold Spring Harbour Laboratory, pp. 547–549.Google Scholar
  20. [20]
    Rohlfing, D. L.: 1976,Science 193, 68–70.PubMedGoogle Scholar
  21. [21]
    Kenyon, D. H. and Steinman: 1969,Biochemical Predestination, Mcgraw-Hill New York, pp. 182–195.Google Scholar
  22. [22]
    Walsh, C. T.: 1984,Trends Biochem. Sci. 9, 159–162.Google Scholar
  23. [23]
    Nomoto, A., Detjen, B., Pozzatti, R., and Wimmer, E.: 1977,Nature 268, 208–213.PubMedGoogle Scholar
  24. [24]
    Robson, B.: 1980,Trends in Biochem. Sci. 5, 240–244.Google Scholar
  25. [25]
    Chakravarty, P. K., Mathur, K. B., and Dhar, M. M.:Experientia 229, 786–788.Google Scholar
  26. [26]
    Gutte, B., Daumigen, M., and Wittschieber, E.: 1979,Nature 281, 650–655.PubMedGoogle Scholar
  27. [27]
    Lacy, C. L. and Mullins: 1983,Origins of Lige 13, 3–42.Google Scholar
  28. [28]
    Hopfield, J. J.: 1978,Proc. Natl. Acad. Sci. 75, 4334–4338.PubMedGoogle Scholar
  29. [29]
    Lee, S. G., Roskoski Jr., Bauer, and Lipmann, F.: 1973,Biochemistry 12, 398–405.PubMedGoogle Scholar
  30. [30]
    Lipmann, F.: 1974, in Dose, K., Fox, S. W., Deborin, G. A., and Pavlovskaya, T. E. (eds.),Origin of Life and Evolutionary Biochemistry, Plenum Press, New York and London, pp. 321–330.Google Scholar
  31. [31]
    Wang, Q. S., Bronskill, P. M., and Wong, J. T.: 1987,Arch. Biochem. Biophys. 255, 176–183.PubMedGoogle Scholar
  32. [32]
    Weissenbach, J. and Grosjean, H.: 1981,Eur. J. Biochem. 116, 207–213.PubMedGoogle Scholar
  33. [33]
    Labuda, D. and Porschke, D.: 1983,J. Mol. Biol. 167, 205–209.PubMedGoogle Scholar
  34. [34]
    Shvedova, T. A., Korneeva, G. A., Otroshchenko, V. A., and Venkstern, T. V.: 1987,Nucleic Acids Res. 15, 1745–1752.PubMedGoogle Scholar
  35. [35]
    Noller, H. F., Stern, S., Moazed, D., Powers, T., Svensson, P., and Changchien, L. M.: 1987,Cold Spring Harbor Symp. Quant. Biol. 52, 695–708.PubMedGoogle Scholar
  36. [36]
    Ruffner, D. E., Dahm, S. C., and Uhlenbeck, O. C.: 1989, in Belfort, M. and Shub, D. A. (eds.),RNA: Catalysis, Splicing, Evolution, Elsevier Amsterdam, pp. 31–41.Google Scholar
  37. [37]
    Pace, N. R., Reich, C., James, B. D., Olsen, G. J., Pace, B., and Waugh, D. S.: 1987,Cold Spring Harbor Symp. Quant. Biol. 52, 239–248.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • J. Tze-Fei Wong
    • 1
  1. 1.Department of BiochemistryHong Kong University of Science & TechnologyHong Kong

Personalised recommendations