Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Theoretical investigation of the role of clay edges in prebiotic peptide bond formation

II. Structures and thermodynamics of the activated complex species

Abstract

Amino acid activation by anhydride formation in model tetrahedral silicate and aluminate sites in clays and neutral phosphates have been studied by semi-empirical molecular orbital calculations. the results have been compared to previousab initio studies on the reactant species and were found to be in good agreement. The geometries of all species were totally optimized and heats of formation obtained. Relative heats of formation of the anhydrides indicate the extent of anhydride formation to be Al > Si > P which is the same order as the stability of hydrolysis. The relative efficacy of the anhydrides in promoting peptide bond formation has been evaluated using both thermodynamic and chemical reactivity criteria. Heats of reaction for model reactions were calculated from calculated enthalpies of formation of the products and reactants. The electrophilicity of the carbonyl carbon and the nucleophilicity of the oxygen were specifically used as indicators of chemical reactivity towards dipeptide formation by the activated amino acids. Our results indicate that if the reaction mechanism is dominated by the nucleophilic character of the oxygen, tetrahedral Al sites should be more active than Si, and if the electrophilic character dominates, the order would be reversed.

This is a preview of subscription content, log in to check access.

References

  1. Bernal, J. D.: 1951,The Physical Basis of Life, Routledge and Kegan Paul, London.

  2. Cairns-Smith, A. G.: 1975,Proc. R. Soc. London, Ser. B189 249.

  3. Dewar, M. J. S. and Thiel, W.: 1975,J. Am. Chem. Soc. 99 4899.

  4. Fribele, E., Shimoyama, A., and Ponnamperuma, C.: 1980,J. Mol. Evol. 16 269.

  5. Gupta, A., Loew, G., and Lawless, J.: 1983,Inorg. Chem. 22 111.

  6. Hjelmeland, L. M. and Loew, G.: 1977,Tetrahedron 33 1029.

  7. JANAF Thermochemical Tables, Second Edition: 1970, D. R. Stull and H. Prophetet al., NSRDS-NBS 37.

  8. Jewett, D. and Lawless, J.: 1981,Naturwiss. 68 570.

  9. Klopman, G. and Hudson, R. F.: 1967,Theor. Chim. Acta 8 165.

  10. Lahav, N. and Chang, S.: 1976,J. Mol. Evol. 8 357.

  11. Lahav, N., White, D., and Chang, S.: 1978,Science 201 67.

  12. Lahav, N. and White, D.: 1980,J. Mol. Evol. 16 11.

  13. Laszlo, P.: 1987,Science 235 1473.

  14. Lawless, J. G. and Levi, N.: 1979,J. Mol. Evol. 13 281.

  15. Lawless, J. G. and Edelson, E. G.: 1980,Life Sciences and Space Research, Pergamon Press, New York, Vol. VIII, pp. 81–88.

  16. Lehninger, A. L.: 1975,Biochemistry 2nd Ed., Worth Publishing, New York, p. 398.

  17. Liebmann, P., Loew, G., Burt, S., Lawless, J., and MacElroy, R.: 1982,Inorg. Chem. 21 1586.

  18. Luke, B. T., Gupta, A. G., Loew, G. H., Lawless, J. G., and White, D. H.: 1984,Int. J. Quantum Chem.: QBS 11 117.

  19. Mulliken, R. S.: 1955,J. Chem. Phys. 23 2833.

  20. Murrell, J. N., Radic, M., and Williams, D. R.: 1965,Proc. Roy, Soc. A284 566.

  21. Murrell, J. N. and Shaw, G.: 1968,J. Chem. Phys. 46.

  22. Oie, T., Loew, G., Burt, S., Binkley, J., and MacElroy, R.: 1982,J. Am. Chem. Soc. 104 6169.

  23. Oie, T., Loew, G., Burt, S., and MacElroy, R.: 1983,J. Am. Chem. Soc. 105 2221.

  24. Oie, T., Loew, G., Burt, S., Binkley, J., and MacElroy, R.: 1982,Int. J. Quantum Chem., Quantum Biol. Symp. 9 223.

  25. Oie, T., Loew, G., Burt, S., and MacElroy, R.: 1983,J. Comput. Chem. 4 449.

  26. Oie, T., Loew, G., Burt, S., and MacElroy, R.: 1984,J. Am. Chem. Soc. 106 8007.

  27. Otroschenko, V. A. and Vasilyeva, N. V.: 1977,Origins of Life 8 25.

  28. Paecht-Horowitz, M., Berger, J., and Katchalsky, A.: 1970,Nature 228 636.

  29. Paecht-Horowitz, M.: 1973,Isr. J. Chem. 11 369.

  30. Stewart, J. J. P.: MOPAC version 3.0; QCPE No. 455.

  31. Theng, B. K. G.: 1974,The Chemistry of Clay-Organic Reactions, Wiley, New York.

  32. Westheimer, F.: 1987,Science 235 1173.

  33. White, D. H. and Erickson, J. C.: 1980,J. Mol. Evol. 16 279.

  34. White, D. H., Kennedy, R. M., and Macklin, J. W.: 1984,Origins of Life 14 273.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Collins, J.R., Loew, G.H., Luke, B.T. et al. Theoretical investigation of the role of clay edges in prebiotic peptide bond formation. Origins Life Evol Biosphere 18, 107–119 (1988). https://doi.org/10.1007/BF01808785

Download citation

Keywords

  • Dipeptide
  • Chemical Reactivity
  • Carbonyl Carbon
  • Molecular Orbital Calculation
  • Activate Amino Acid