Prebiotic ribose synthesis: A critical analysis

  • Robert Shapiro


The discovery of catalytic ability in RNA has given fresh impetus to speculations that RNA played a critical role in the origin of life. This question must rest on the plausibility of prebiotic oligonucleotide synthesis, rather than on the properties of the final product. Many cliams have been published to support the idea that the components of RNA were readily available on the prebiotic earth. In this article, the literature cited in support of the prebiotic availability of one subunit, D-ribose, is reviewed to determine whether it justifies the claim.

Polymerization of formaldehyde (the formose reaction) has been the single reaction cited for prebiotic ribose synthesis. It has been conducted with different catalysts: numerous basic substances, neutral clays and heat, and various types of radiation. Ribose has been identified (yields are uncertain, but unlikely to be greater than 1%) in reactions run with concentrated (0.15 M or greater) formaldehyde. It has been claimed in reactions run at lower concentration, but characterization has been inadequate, and experimental details have not been provided.

The complex sugar mixture produced in the formose reaction is rapidly destroyed under the reaction conditions. Nitrogenous substances (needed for prebiotic base synthesis) would interfere with the formose reaction by reacting with formaldehyde, the intermediates, and sugar products in undesirable ways.

The evidence that is currently available does not support the availability of ribose on the prebiotic earth, except perhaps for brief periods of time, in low concentration as part of a complex mixture, and under conditions unsuitable for nucleoside synthesis.


Sugar Clay Formaldehyde Nucleoside Ribose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bass, B. L. and Cech, T. R.: 1984,Nature Google Scholar
  2. Candiano, G., Ghiggeri, G. M., Delfino, G., Quierolo, C. Cuniberti, C., Gianazza, E., and Righetti, P. G.: 1985,Carbohydr. Res. 145, 99.Google Scholar
  3. Canuto, V. M., Levine, J. S., Augustsson, T. R., Imhoff, C. L., and Giampapa, M. S.: 1983,Nature 305, 281.Google Scholar
  4. Castells, J., Geijo, F., and Lopez-Calahorra, F.: 1980,Tetrahedron Lett. 21, 4517.Google Scholar
  5. Cech, T. R.: 1986,Proc. Natl. Acad. Sci. USA 83, 4360.PubMedGoogle Scholar
  6. Cech, T. R. and Bass, B. L.: 1986,Ann. Rev. Biochem. 55, 599.PubMedGoogle Scholar
  7. Chavis, C., De Gourcy, C., Dumont, F., and Imbach, J.-L.: 1983,Carbohydr. Res. 113, 1.Google Scholar
  8. Chaw, Y. F. M., Crane, L. E., Lange, P., and Shapiro, R.: 1980,Biochemistry 19, 5525.PubMedGoogle Scholar
  9. Darnell, J. E. and Doolittle, W. F.: 1986,Proc. Natl. Acad. Sci. U.S.A. 83, 1271.PubMedGoogle Scholar
  10. Decker, P., Schweer, H., and Pohlmann, R.:J. Chromatogr. 244, 281.Google Scholar
  11. De Wit, G., Kieboom, A. P. G., and Van Bekkum, H.: 1979,Carbohydr. Res. 74, 157.Google Scholar
  12. Dickerson, R. E.: 1978,Scientific American 239, 70.PubMedGoogle Scholar
  13. Dillon, L. S.: 1978,The Genetic Mechanism and the Origin of Life, Plenum Press, New York, pp. 17–19.Google Scholar
  14. Eck, R. J., Lippencott, E. R., Dayhoff, M. O., and Pratt, V. T.: 1966,Science 153, 628.Google Scholar
  15. Eigen, M. and Schuster, P.: 1978,Naturwissenschaften 65, 341.Google Scholar
  16. Eigen, M. and Schuster, P.: 1982,J. Mol. Evol. 19, 47.PubMedGoogle Scholar
  17. Fegley Jr., B., Prinn, R. G., Hartman, H., and Watkins, G. H.: 1986,Nature 319, 305.PubMedGoogle Scholar
  18. Ferris, J. P. and Chen, C. T.: 1975,J. Amer. Chem. Soc. 97, 2962.Google Scholar
  19. Ferris, J. P., Joshi, P. C., Edelson, E. H., and Lawless, J. G.: 1978,J. Mol. Evol. 11, 293.PubMedGoogle Scholar
  20. Folsome, C., Brittain, A., and Zelko, M.: 1983,Origins of Life 13, 49.Google Scholar
  21. Gabel, N. W. and Ponnamperuma, C.: 1967,Nature 216, 453.PubMedGoogle Scholar
  22. Gilbert, W.: 1986,Nature 319, 618.Google Scholar
  23. Harsch, G., Harsch, M., Bauer, H., and Voelter, W.: 1983,Z. Naturforsch. 38b, 1269.Google Scholar
  24. Hallman M. and Bloch, S.: 1979,BioSystems 14, 15.Google Scholar
  25. Hemminki, K.: 1981,Toxicol. Lett. 9, 161.PubMedGoogle Scholar
  26. Ivanov, Ch. P., Ivanov, O. Ch., Simeonova, R., and Mirkova, G. D.: 1983,Origins of Life 14, 97.Google Scholar
  27. Jeanloz, R. W. and Fletcher, Jr., H. W.: 1951,Advan. Carbohydr. Chem. 6, 135.Google Scholar
  28. Joyce, G. F., Visser, G. M., van Boeckel, C. A. A., van Boom, J. H., Orgel, L. E., and van Westrenen, J.: 1984,Nature 310, 602.PubMedGoogle Scholar
  29. Kasting, J. F. and Pollack, J. B.: 1984,J. Atmos. Chem. 1, 403.PubMedGoogle Scholar
  30. Kuhn, H. and Waser, J.: 1981,Angew. Chem. Int. Ed. English 20, 500.Google Scholar
  31. Lederberg, J., Sutherland, G. L., Buchanan, B. G., Feigenbaum, E. A., Robertson, A. V., Duffield, A. M., and Djerassi, C.: 1969,J. Amer. Chem. Soc. 91, 2973.Google Scholar
  32. Lehninger, A. L.: 1975,Biochemistry, 2nd Ed., Worth Publishers, New York, pp. 1035–1036.Google Scholar
  33. Levine, J. S.: 1982,J. Mol. Evol. 18, 161.PubMedGoogle Scholar
  34. Levine, J. S. and Augustsson, T. R.: 1985,Origins of Life 15, 299.PubMedGoogle Scholar
  35. Maugh II, T. L.: 1983,Science 220, 293.Google Scholar
  36. Miller, S. L.: 1984,Advan. Chem. Phys. LV, 85.Google Scholar
  37. Miller, S. L. and Orgel, L. E.: 1974,The Origins of Life on the Earth, Prentice-Hall, Englewood Cliffs, New Jersey, pp. 109–112.Google Scholar
  38. Mills, J. A.: 1961/62,Biochem. Biophys. Res. Commun. 6, 418.Google Scholar
  39. Mizuno, T. and Weiss, A. H.: 1974,Advan. Carbohyd. Chem. Biochem. 29, 173.Google Scholar
  40. Morowitz, H. J.: 1968,Energy Flow in Biology, Academic Press, New York.Google Scholar
  41. Nisbet, E. G.: 1986,Nature 322, 206.Google Scholar
  42. Orgel, L. E.: 1986,J. Theor. Biol. 123, 127.PubMedGoogle Scholar
  43. Oró, J. and Kimball, A. P.: 1962,Arch. Biochem. Biophys. 96, 293.PubMedGoogle Scholar
  44. Pace, N. R. and Marsh, T. L.: 1985,Origins of Life 16, 97.PubMedGoogle Scholar
  45. Paulsen, H. and Pflughaft, K.-W.: 1980, in W. Pigman and D. Horton (eds.)The Carbohydrates, Chemistry and Biochemistry, 2nd Ed., Vol. 1B, Academic Press, New York, pp. 881–927.Google Scholar
  46. Pigman, W. and Anet, E. F. L. J.: 1972, in W. Pigman and D. Horton (eds.)The Carbohydrates, Chemistry and Biochemistry, 2nd Ed., Vol. 1A, Academic Press, New York, pp. 165–192.Google Scholar
  47. Ponnamperuma, C.: 1965, in S. I. W. Fox (ed.),The Origins of Prebiological Systems, Academic Press, New York, pp. 221–236.Google Scholar
  48. Ponnamperuma, C. and Mariner, R.: 1963,Radiation Res. 19, 183.Google Scholar
  49. Reid, C. and Orgel, L. E.: 1967,Nature 216, 455.PubMedGoogle Scholar
  50. Schlesinger, G. and Miller, S. L.: 1973,J. Amer. Chem. Soc. 95, 3729.Google Scholar
  51. Schwartz, A. W.: 1981, in E. K. Duursma and R. Dawson (eds.),Marine Organic Chemistry, Elsevier, Amsterdam, pp. 7–30.Google Scholar
  52. Schwartz, A. W., Joosten, H., and Voet, A. B.: 1982,Biosystems 15, 191.PubMedGoogle Scholar
  53. Seel, F., Schaum, W., and Simon, G.: 1981,Z. Naturforsch. 36b, 1451.Google Scholar
  54. Seriani, A. S., Nunez, H. A., and Barker, R.: 1979,Carbohydr. Res. 72, 71.Google Scholar
  55. Sharp, P.: 1985,Cell 42, 397.PubMedGoogle Scholar
  56. Shigemasa, Y., Matsuda, Y., Sakazawa, C., and Matsuura, T.: 1977,Bull. Chem. Soc. Jap. 50, 222.Google Scholar
  57. Shigemasa, Y., Sakazawa, C., Nakashima, R., and Matsuura, T.: 1978, in H. Noda (ed.),Origin of Life, Center for Academic Publications Japan, Tokyo, pp. 211–216.Google Scholar
  58. Shigemasa, Y., Sasaki, Y., Ueda, N., and Nakashima, R.: 1984,Bull. Chem. Soc. Jap. 57, 2761.Google Scholar
  59. Smith, D. H.: 1975,J. Chem. Inf. Comput. Sci. 15, 203.Google Scholar
  60. Socha, R. F., Weiss, A. H., and Sakharov, M. M.: 1981,J. Catal. 67, 207.Google Scholar
  61. Tewari, R. B. and Goldberg, R. N.: 1985,Biophys. Chem. 22, 197.PubMedGoogle Scholar
  62. Trachtman, P.: 1984:Smithsonian, June 1984, pp. 413–452.Google Scholar
  63. Voet, A. B. and Schwartz, A. W.: 1983,Bioorganic Chem. 12, 8.Google Scholar
  64. Von Sonntag, C. and Dizdaroglu, M.: 1977,Carbohyd. Res. 58, 21.Google Scholar
  65. Walker, J. F.: 1940,Formaldehyde, Reinhold, New York, pp. 199–226, 278–281.Google Scholar
  66. Waugh, D. S. and Pace, N. R. 1986:BioEssays 4, 56.PubMedGoogle Scholar
  67. Weber, A. L.: 1985,J. Mol. Evol. 21, 351.PubMedGoogle Scholar
  68. Weiss, A. H., LaPierre, R. B., and Shapira, J.: 1970,J. Catalysis 16, 332.Google Scholar
  69. Yanagawa, H., Kobayashi, and Egami, F.: 1980,J. Biochem. (Tokyo) 87, 359.PubMedGoogle Scholar
  70. Zaug, A. J. and Cech, T. R.: 1986,Biochemistry 25, 4478.PubMedGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1988

Authors and Affiliations

  • Robert Shapiro
    • 1
  1. 1.Department of ChemistryNew York UniversityNew YorkUSA

Personalised recommendations