Origins of life and evolution of the biosphere

, Volume 21, Issue 5–6, pp 407–420 | Cite as

Terrestrial and extraterrestrial sources of molecular homochirality

  • William A. Bonner


The unique chirality of biomolecules is reviewed, and the prebiotic requirement for the absolute chiral homogeneity of such molecules prior to their capability of self-replication is emphasized. Biotic and abiotic theories embracing both chance and determinate mechanisms which have been proposed for the origin of terrestrial chiral molecules are briefly summarized and evaluated, as are abiotic mechanisms for the subsequent amplification of the small enantiomeric excesses (e.e.s) in the chiral molecules which might be formed by such processes. While amplification mechanisms are readily validated experimentally and are potentially viable on the primitive Earth, it is concluded that all terrestrial mechanisms proposed for the origin of chirality have one or more limitations which make them either intrinsically invalid or highly improbable in the chaotic and turbulent environment of the prebiotic Earth. To circumvent these difficulties we have proposed an extraterrestrial scenario for the production of terrestrial chirality in which circularly polarized synchrotron radiation from the neutron star remnant of a supernova interacts with the organic mantles on interstellar grains, producing chiral molecules by the partial asymmetric photolysis of racemic constituent in the mantles, after which the interstellar grains with their enantiomerically enriched mantles are transported to Earth either by direct accretion or through cometary impact. At this point one of the known terrestrial e.e. enrichment mechanisms could promote the small extraterrestrially produced e.e.s. into the state of chiral homogeneity required for self-replicating biomolecules.


Neutron Star Enantiomeric Excess Chiral Molecule Enrich Mantle Turbulent Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal, V. K., Schutte, W., Greenberg, J. M., Ferris, J. P., Briggs, R., Conner, S., van de Bult, C. E. P. M., and Baas, F.: 1986,Origins of Life 16, 21.Google Scholar
  2. Avetisov, V. A., Anikin, S. A., Goldanskii, V. I., and Kuzmin, V. V.: 1985,Dokl. Akad. Nauk SSSR — Biophys. 282 115.Google Scholar
  3. Avetisov, V. A. and Goldanskii, V. I.: 1991,BioSystems 25 141.PubMedGoogle Scholar
  4. Avetisov, V. A., Goldanskii, V. I., and Kuzmin, V. V.: 1991,Physics Today 44 33.PubMedGoogle Scholar
  5. Bada, J. L. and Miller, S. L.: 1987,BioSystems 20 21.Google Scholar
  6. Bailey, M. E., Clube, S. V. M., and Napier, W. M.: 1990,The Origin of Comets, Pergamon Press, New York, pp. 372–423.Google Scholar
  7. Barron, L. D.: 1987,BioSystems 20 7.PubMedGoogle Scholar
  8. Berlin, Y. A., Gladkov, S. O., Goldanskii, V. I., and Kuzmin, V. V.: 1989,Sov. Phys. Dokl. 34 528.Google Scholar
  9. Bonner, W. A.: 1972, in Ponnamperuma, C. (ed.),Exobiology, North-Holland, Amsterdam, pp. 170–234.Google Scholar
  10. Bonner, W. A.: 1988, in Eliell, E. L. and Wilen, S. H. (eds.),Topics in Stereochemistry Vol. 18, John Wiley-Sons, New York, pp. 1–96.Google Scholar
  11. Bonner, W. A.: 1991,Origins Life Evol. Biosphere 21 59–111.Google Scholar
  12. Bonner, W. A. and Lemmon, R. M.: 1981,Origins of Life 11 321.PubMedGoogle Scholar
  13. Bonner, W. A. and Rubenstein, E.: 1987,BioSystems 20 99.PubMedGoogle Scholar
  14. Bonner, W. A. and Rubenstein, E.: 1990, in Ponnamperuma, C. and Eirich, F. R. (eds.),Prebiological Self Organization of Matter, A. Deepak Publishing, Hampton, Virginia, pp. 35–50.Google Scholar
  15. Bonner, W. A., Hall, H., Chow, G., Liang, Y., and Lemmon, R. M.: 1985,Origins of Life 15 103.PubMedGoogle Scholar
  16. Brack, A. and Spach, G.: 1987,BioSystems 20 95.PubMedGoogle Scholar
  17. Calvin, M.: 1969,Chemical Evolution, Oxford University Press, Oxford, pp. 149–152.Google Scholar
  18. Chyba, C. F.: 1990a,Nature 343 129.Google Scholar
  19. Chyba, C. F.: 1990b,Nature 348 113.Google Scholar
  20. Chyba, C. and Sagan, C.: 1992,Nature 355 125.PubMedGoogle Scholar
  21. Chyba, C. F., Thomas, P. J., Brookshaw, L., and Sagan, C.: 1990,Science 249 366.PubMedGoogle Scholar
  22. Delsemme, A. H.: 1984,Origins of Life 14 51.Google Scholar
  23. Draffen, G. H., Eglinton, G., Hayes, J. M., Maxwell, J. R., and Pillinger, C. T.: 1969,Chem. Brit. 5 296.Google Scholar
  24. Engel, M. H., Macko, S. A., and Silfer, J. A.: 1990,Nature 348 47.PubMedGoogle Scholar
  25. Gause, G. F.: 1941,Optical Activity and Living Matter, Biodynamica Normandy, Missouri, pp. 19–34.Google Scholar
  26. Gladyshev, G. P. and Khasanov, M. M.: 1981,J. Theor. Biol. 90 191.PubMedGoogle Scholar
  27. Goldanskii, V. I.: 1988,Wiss. Fortschr. 38 188.Google Scholar
  28. Goldanskii, V. I. and Kuzmin, V. V.: 1988,Z. Phys. Chem. 269 216.Google Scholar
  29. Goldanskii, V. I. and Kuzmin, V. V.: 1991,Nature 352 114.Google Scholar
  30. Greenberg, J. M.: 1983a, in Ponnamperuma, C. (ed.),Cosmochemistry and the Origin of Life, Kluwer Acad. Publ, Boston, pp. 71–112.Google Scholar
  31. Greenberg, J. M.: 1983b,Bull. Soc. Chim. Belg. 92 595.Google Scholar
  32. Greenberg, J. M.: 1984a,Sci. Am. 250 124.Google Scholar
  33. Greenberg, J. M.: 1984b,Origins of Life 14 25.Google Scholar
  34. Halpern, B., Westley, J. W., Levinthal, E., and Lederberg, J.: 1966,Life Sci. Space Res. 5 239.Google Scholar
  35. Joyce, G. F., Visser, G. M., van Boeckel, C. A. A., van Boom, J. H., Orgel, L. E., and van Westrenen, J.: 1984,Nature 310 602.PubMedGoogle Scholar
  36. Joyce, G. F., Schwartz, A. F., Miller, S. L., and Orgel, L. E.: 1987,Proc. Natl. Acad. Sci. USA 84 4398.PubMedGoogle Scholar
  37. Khasanov, M. M. and Gladyshev, G. P.: 1980,Origins of Life 10 247.PubMedGoogle Scholar
  38. Keszthelyi, L.: 1987,BioSystems 20 15.PubMedGoogle Scholar
  39. Maher, K. A. and Stevenson, D. J.: 1988,Nature 331 612.PubMedGoogle Scholar
  40. Marcus, J. N. and Olsen, M. A.: 1991, inComets in the Post-Halley Era, Newburn, R. L., Neugebauer, M., and Rahe, J. (eds.), Kluwer Acad. Publ., Dordrecht, The Netherlands, pp. 439–462.Google Scholar
  41. Miller, S. L. and Orgel, L. E.: 1974, inThe Origins of Life on Earth, Prentice-Hall, Inc., Englewood Cliffs, N. J., pp. 166–174.Google Scholar
  42. Oberbeck, V. R. and Fogleman, G.: 1989a,Nature 339 434.PubMedGoogle Scholar
  43. Oberbeck, V. R. and Fogleman, G.: 1989b,Origins Life Evol. Biosphere 19 549.Google Scholar
  44. Oberbeck, V. R. and Fogleman, G.: 1990,Origins Life Evol. Biosphere 20 181.Google Scholar
  45. Oró, J.: 1961,Nature 190 389.Google Scholar
  46. Pasteur, L.: 1860,Researches on Molecular Asymmetry, Univ. Chicago Press, Chicago, 1914, pp. 29, 45.Google Scholar
  47. Rubenstein, E., Bonner, W. A., Noyes, H. P., and Brown, G. S.: 1983,Nature 306 118.Google Scholar
  48. Sagan, C.: 1974,Origins of Life 5 497.PubMedGoogle Scholar
  49. Salam, A.: 1991,J. Mol. Evol. 33 105.Google Scholar
  50. Schidlowski, M.: 1989,Origins Life Evol. Biosphere 19 454.Google Scholar
  51. Sleep, N. H., Zahnle, K. J., Kasting, J. F., and Morowitz, H. J.: 1989,Nature 343 139.Google Scholar
  52. Wald, G.: 1957,Ann. N. Y. Acad. Sci. 69 353.Google Scholar
  53. Waldrop, M. M.: 1990,Science 250 1078.Google Scholar
  54. Weber, A. L.: 1989,Origins Life Evol. Biosphere 19 7.Google Scholar
  55. Williams, K. M. and Smith, G. G.: 1977,Origins of Life 8 91.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • William A. Bonner
    • 1
  1. 1.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations