Origins of life and evolution of the biosphere

, Volume 26, Issue 1, pp 75–94 | Cite as

A review of conditions affecting the radiolysis due to40K on nucleic acid bases and their derivatives adsorbed on clay minerals: Implications in prebiotic chemistry

  • F. G. Mosqueira
  • G. Albarrán
  • A. Negrón-Mendoza


This paper describes the possible effects of ionizing radiation arising from long-lived soluble radionuclides within clays, in particular40K, at the epoch of the emergence of life on Earth. The free dispersion of soluble radionuclides constitutes an effectivein situ irradiation mechanism that might have acted upon adsorbed nucleic bases and their derivatives on clays, inducing chemical changes on these organic molecules. Several types of well documented reactions for radiolysis of nucleic acid bases and their derivatives are known, even at low doses (i.e., 0.1 Gy). For example, estimates with a dose rate calculated from40K from deep sea clays at 3.8 Ga ago, indicates that over a period of 1000 years the amount of organic material transformated is 1.8 × 10−7 moles/kg-clay.

Although ionizing radiation may also induce synthetic reactions with prebiological interest, all in all these considerations indicate that nucleic acid bases and their derivatives adsorbed on clays were exposed for long periods to degradation conditions. Such situation promotes decomposition of organic molecules rather than protection of them and enhancement of further polymerization, as it has been usually taken for granted.


Clay Geochemistry Radionuclide Chemical Change Clay Mineral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anbar, M.: 1968,Science 161, 1343–1344.Google Scholar
  2. Banin, A., Lawless, J.G., Mazzurco, J., Church, F.M., Margulies, L., and Orenberg, J.B.: 1985,Origins Life Evol. Biosphere 15, 89–101.Google Scholar
  3. Berger, M. and Cadet, J.: 1985,Z. Naturforsch 40 b, 1519–1531.Google Scholar
  4. Bernal, J.D.: 1951,The Physical Basis of Life, Routledge and Kegan Paul, London.Google Scholar
  5. Bhattacharyya, S.N. and Mandal, P.C.: 1983,J. Chem. Soc. Faraday Trans., I 79, 2613–2629.Google Scholar
  6. Cadet, J. and Teoule, R.: 1972,Tetrahedron Lett., 3225–3228.Google Scholar
  7. Cadet, J. Voituriez, L., Berger, M., and Myers, L.S.: 1983,Z. Naturforsch 38 b, 1643–1651.Google Scholar
  8. Cadet, J. and Berger, M.: 1985,Int. J. Radiat. Biol. 47, 127–143.Google Scholar
  9. Coyne, L.M., Lahav, N., and Lawless, G.: 1981,Nature (London) 292, 819–821.Google Scholar
  10. Coyne, L.M.: 1985,Origins Life Evol. Biosphere 15, 161–206.Google Scholar
  11. Daoud, M., Farnoux, B., Jannink, G., and Johner, A.: 1990,Can. J. Phys. 68, 1089–1093.Google Scholar
  12. Das, S., Deeble, D.J., and von Sonntag, C.: 1985,Z. Naturforsch 40, 292–294.Google Scholar
  13. Dizdaroglu, M. and Simic, M.G.: 1984a,Int. J. Radiat. Biol. 46, 241–246.Google Scholar
  14. Dizdaroglu, M. and Simic, M.G.: 1984b,Radiat. Res. 100, 41–46.PubMedGoogle Scholar
  15. Dizdaroglu, M. and Simic, M.G.: 1985,Radiat. Phys. Chem. 26, 309–316.Google Scholar
  16. Draganic, I. and Draganic, Z.: 1973,The Radiation Chemistry of Water, Academic Press, New York.Google Scholar
  17. Draganic, I.G., Bjergbakke, E., Draganic, Z.D., and Sehested K.: 1991,Precambrian Research 52, 337–345.Google Scholar
  18. Eber, D.D.: 1988, in Cairns-Smith, A.G., and Hartman, H. (eds.),Clay Mineral and the Origin of Life, Cambridge University Press, New York.Google Scholar
  19. Eisenbud M.: 1973, in Douglas, H.K., Lee, E. Hewson, W., and Okun, D., (eds.),Environmental Radioactivity, Academic Press, New York. pp. 186–187.Google Scholar
  20. Emsley, J.: 1990,The Elements. Clarendon Press, Oxford.Google Scholar
  21. Ferris, J.P., Huang, C.H., and Hagan, W.J., Jr.: 1988,Origins Life Evol. Biosphere 18, 121–133.Google Scholar
  22. Ferris, J.P., Ertem, G., and Agarwal, V.K.: 1989,Origins Life Evol. Biosphere 19, 153–164.Google Scholar
  23. Fox, S.W. and Dose, K.: 1977, inMolecular Evolution and the Origin of Life, Marcel Dekker Inc., New York. pp. 54–56.Google Scholar
  24. Frenkel, M.: 1974,Clays Clay Miner. 22, 435–441.Google Scholar
  25. Fujita, S.: 1984,Int. J. Rad. Biol. 45, 371–377.Google Scholar
  26. Garibov, A.A., Melikzade, M.M., Bakirov, M.YA., and Ramazanova, M.K.: 1982,High Ener. Chem. 16, 177–179.Google Scholar
  27. Gregoli, S., Olast, M., and Bertinchamps, A.: 1974,Radiat. Res. 60, 388–404.PubMedGoogle Scholar
  28. Gregoli, S., Olast, M., and Bertinchamps, A.: 1976,Radiat. Res. 65, 202–219.PubMedGoogle Scholar
  29. Gregoli, S., Olast, M., and Bertinchamps, A.: 1977,Radiat. Res. 72, 201–217.PubMedGoogle Scholar
  30. Harder, H.: 1988, in Cairns-Smith, A. G., and Hartman H. (eds.),Clay Mineral and the Origin of Life, Cambridge University Press, New York.Google Scholar
  31. Haysom, H.R., Phillips, J.M., and Scholes, G.: 1972,J. Chem. Soc. Chem. Comm., 1082–1083.Google Scholar
  32. Henley, E.J. and Johnson, E.R.: 1969,The Chemistry and Physics of High Energy Reactions, University Press, Washington, D.C.Google Scholar
  33. Hirschler, A.E. and Schneider, A.: 1961,J. Chem. Eng. Data 6, 313–318.Google Scholar
  34. Infante, G.A., Jirathana, P., Fendler, J.H., and Fendler, E.J.: 1973,J. Chem. Soc. Faraday I 69, 1586–1596.Google Scholar
  35. Jovanovic, S. and Simic, M.G.: 1986,J. Am. Chem. Soc. 108, 5968–5972.Google Scholar
  36. Kabata-Pendias A. and Pendias, H.: 1986, inTrace Elements in Soils and Plants, CRC Press, Inc, Boca Raton, Florida.Google Scholar
  37. Kamal, A. and Garrison, W.M.: 1965,Nature 206, 1315–1317.PubMedGoogle Scholar
  38. Klement, A.W.: 1982, in Brodsky A. (ed.),Handbook of Environmental Radiation, CRC Press, Inc., Boca Raton, Florida.Google Scholar
  39. Lahav, N. and Chang, S.: 1976,J. Mol. Evol. 8, 357–380.PubMedGoogle Scholar
  40. Lahav, N. and White, D.H.: 1980,J. Mol. Evol. 16, 11–21.PubMedGoogle Scholar
  41. Lailach, G.E., Thompson, T.D., and Brindley, G.W.: 1968a,Clays Clay Miner. 16, 285–293.Google Scholar
  42. Lailach, G.E., Thompson, T.D., and Brindley, G.W.: 1968b,Clays Clay Miner. 16, 295–301.Google Scholar
  43. Lailach, G.E. and Brindley, G.W.: 1969,Clays Clay Miner. 17, 95–100.Google Scholar
  44. Lazard, D., Lahav, N., and Orenberg, J.B.: 1987,Origins Life Evol. Biosphere 17, 135–148.Google Scholar
  45. Lazard, D., Lahav, N., and Orenberg, J.B.: 1988,Origins Life Evol. Biosphere 18, 347–357.Google Scholar
  46. Lederer C.M. and Shirley, V.S.: 1978, inTables of Isotopes, Seventh edition, J. Wiley and Sons, Inc., New York.Google Scholar
  47. McAuliffe, C. and Coleman, N.T.: 1955,Soil Sci. 19, 156–160.Google Scholar
  48. Mortland, M.M. and Raman, K.V.: 1968,Clays Clay Miner. 16, 393–398.Google Scholar
  49. Mosqueira, F.G.: 1979,Biosystems 11, 233–242.PubMedGoogle Scholar
  50. Mosqueira, F.G.: 1988,Origins Life Evol. Biosphere 18, 143–156.Google Scholar
  51. Nishimoto, S., Ide, H., Nakamichi, K., and Kagiya, T.: 1983,J. Am. Chem. Soc. 105, 6740–6741.Google Scholar
  52. Oberbeck, V.R. and Fogleman, G.: 1989,Origins Life Evol. Biosphere 19, 549–560.Google Scholar
  53. Oberbeck, V.R. and Fogleman, G.: 1990,Origins Life Evol. Biosphere 20, 181–195.Google Scholar
  54. Ponnamperuma, C., Lemmon, R.M., and Calvin, M.: 1962,Science 137, 605–607.PubMedGoogle Scholar
  55. Ponnamperuma, C., Shimoyama, A., and Friebele, E.: 1982,Origins Life Evol. Biosphere 12, 9–40.Google Scholar
  56. Pullman, B. and Pullman, A.: 1961,Nature 189, 725–727.PubMedGoogle Scholar
  57. Shapiro, R.: 1984,Origins Life Evol. Biosphere 14, 565–570.Google Scholar
  58. Schidlowski, M.: 1988,Nature 333, 313–318.Google Scholar
  59. Schidlowski, M.: 1993,7th ISSOL Meeting. Abstracts. Barcelona, Spain, p. 90.Google Scholar
  60. Scholes, G., and Weiss, J.: 1953,Nature 171, 920–921.PubMedGoogle Scholar
  61. Sevilla, M., and van Paemel, C.: 1972,Photochem. Photobiol. 15, 407–409.PubMedGoogle Scholar
  62. Sillén, L.G.: 1967,Science 156, 1189–1197.Google Scholar
  63. Solomon, D.H.: 1968,Clays Clay Miner. 16, 31–39.Google Scholar
  64. Sposito, G.: 1984,The Surface Chemistry of Soils, Clarendon Press, Oxford., pp. 106 and 116.Google Scholar
  65. Srinivasan, V.T., Singh, B.B., and Gopal-Ayengar, A.R.: 1970,Int. J. Radiat. Biol. 17, 577–585.Google Scholar
  66. Suslick, K.S.: 1988, inUltrasound: Its Chemical, Physical, and Biological Effects, VCH Publishers, Inc., Federal Republic of Germany.Google Scholar
  67. Swallow, A.J.: 1973,Radiation Chemistry, An Introduction, John Wiley & Sons, New York. pp. 250–254.Google Scholar
  68. van Hemmen, J.J.: 1975,Int. J. Rad. Biol. 27, 403–407.Google Scholar
  69. van Hemmen, J.J. and Bleichrodt, J.F.: 1971,Radiat. Res. 46, 444–456.PubMedGoogle Scholar
  70. von Sonntag, C. and Schuchmann, H.P.: 1986,Int. J. Radiat. Biol. 49, 1–34.Google Scholar
  71. Walker, J.C.G.: 1985,Origins Life Evol. Biosphere 16, 117–127.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • F. G. Mosqueira
    • 1
  • G. Albarrán
    • 2
  • A. Negrón-Mendoza
    • 2
  1. 1.Centro Universitario de Comunicación de la Ciencia, UNAMCiudad Universitaria, Del. CoyoacánMéxico, D. F.México
  2. 2.Instituto de Ciencias Nucleares, UNAMCiudad Universitaria, Del. CoyoacánMéxico, D.F.México

Personalised recommendations