Origins of life and evolution of the biosphere

, Volume 26, Issue 1, pp 15–25

Potentially prebiotic syntheses of condensed phosphates

  • Anthony D. Keefe
  • Stanley L. Miller
Article

Abstract

In view of the importance of a prebiotic source of high energy phosphates, we have investigated a number of potentially prebiotic processes to produce condensed phosphates from orthophosphate and cyclic trimetaphosphate from tripolyphosphate. The reagents investigated include polymerizing nitriles, acid anhydrides, lactones, hexamethylene tetramine and carbon suboxide. A number of these processes give substantial yields of pyrophosphate from orthophosphate and trimetaphosphate from tripolyphosphate. Although these reactions may have been applicable in local areas, they are not sufficiently robust to have been of importance in the prebiotic open ocean.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, P. H.: 1966,Proc. Nat. Acad. Sci. USA 55, 1365–1372.Google Scholar
  2. Baltscheffsky, H.: 1993, inChemical Evolution: Origin of Life, Ponnamperuma, C. and Chela-Flores, J. (eds.), 13–23.Google Scholar
  3. Bartlett, P. D. and Davis, R. E.: 1958,J. Am. Chem. Soc. 80, 2513–2516.Google Scholar
  4. Beck, A. and Orgel, L. E.: 1965,Proc. Nat. Acad. Sci. 54, 664–667.Google Scholar
  5. Bernstein, M. P., Allamandola, L. J., Sandford, S. A. and Chang, S.: 1994,Abstracts of papers, 207th A.C.S. National Meeting, San Diego, CA, March 13–17.Google Scholar
  6. Chang, S., Flores, J. and Ponnamperuma, C.: 1969,Proc. Nat. Acad. Sci. 64, 1011–1015.PubMedGoogle Scholar
  7. Crowell, T. I. and Hankins, M. G.: 1969,J. Phys. Chem. 73, 1380–1383.Google Scholar
  8. Diels, O. and Meyerheim, G.: 1907,Ber. Deut. Chem. Ges. 40, 355.Google Scholar
  9. Eder, A. H., Saetia, S. and Rode, B. M.: 1993,Inorg. Chim. Acta.,207, 3–10.Google Scholar
  10. Ferris, J. P. and Kuder, J. E.: 1970,J. Am. Chem. Soc. 92, 2527–2533.Google Scholar
  11. Ferris, J. P., Sanchez, R. A. and Orgel, L. E.: 1968,J. Mol. Biol. 33, 693–704.PubMedGoogle Scholar
  12. Ferris, J. P. and Usher, D. A.: 1983, in Zubay, G. (ed.),Biochemistry, 1st edition, Addison-Wesley, Reading, Massachusetts.Google Scholar
  13. Flodgaard, H. and Fleron, P.: 1974,J. Biol. Chem. 249, 3465–3474.PubMedGoogle Scholar
  14. Handschuh, G. J., Lohrmann, R. and Orgel, L. E.: 1973,J. Mol. Evol. 2, 251–262.PubMedGoogle Scholar
  15. Hulshof, J. and Ponnamperuma, C.: 1976,Origins Life Evol. Biosphere,7, 197–244.Google Scholar
  16. Huntress, W. T., Allen, M. and Delitsky, M.: 1991,Nature 352, 316–318.Google Scholar
  17. Keefe, A. and Miller, S. L.: 1995,J. Mol. Evol. (in press).Google Scholar
  18. Linke, W. F. and Seidell, A.: 1958,Solubilities Inorganic and metal-organic compounds 1, 4th edition, American Chemical Society, Washington D.C.Google Scholar
  19. Lohrmann, R. and Orgel, L. E.: 1971,Science 171, 490–494.PubMedGoogle Scholar
  20. Lohrmann, R. and Orgel, L. E.: 1973,Nature 244, 418–420.PubMedGoogle Scholar
  21. Morgan, T. D. B., Phillips, E. D. and Stedman, G.: 1969,J. Chem. Soc. (A), 2318–2322.Google Scholar
  22. Miller, S. L. and Parris, M.: 1964,Nature 204, 1248–1250.Google Scholar
  23. Miller, S. L. and Orgel, L. E.: 1974,The Origins of Life on The Earth, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  24. Moser, R. E. and Matthews, C. N.: 1968,Experientia 24, 658–659.PubMedGoogle Scholar
  25. Oró, J., Basile, B., Cortes, S., Shen, C. and Yamron, T.: 1984,Origins Life Evol. Biosphere,14, 237–242.Google Scholar
  26. Österberg, R. and Orgel, L. E.: 1972,J. Mol. Evol. 1, 241–248.PubMedGoogle Scholar
  27. Österberg, R., Orgel, L. E. and Lohrmann, R.: 1973,J. Mol. Evol. 2, 231–234.PubMedGoogle Scholar
  28. Ott, E.: 1928,Ber. Deut. Chem. Ges.,61, 1378.Google Scholar
  29. Rubey, W. W.: 1955,Geol. Soc. Amer. Special paper 62, 631–650.Google Scholar
  30. Sanchez, R. A., Ferris, J. P. and Orgel, L. E.: 1966,Science 153, 72–73.PubMedGoogle Scholar
  31. Sanchez, R. A., Ferris, J. P. and Orgel, L. E.: 1967,J. Mol. Biol. 30, 223–253.PubMedGoogle Scholar
  32. Schlesinger, G. and Miller, S. L.: 1993,J. Mol. Evol. 36, 308–314.Google Scholar
  33. Schlesinger, G. and Miller, S. L.: 1983,J. Mol. Evol. 19, 383–390.PubMedGoogle Scholar
  34. Vieyra, A., Gueiros-Filho, F., Meyer-Fernandes, J. R., Costa-Sarmento, G. and de Souza-Barros, F.: 1995,Origins Life Evol. Biosphere,25, 335–350.Google Scholar
  35. Walker, J. F.: 1964,Formaldehyde, 3rd Edition, Reinhold, New York.Google Scholar
  36. Wilson, C. L.: 1935,J. Chem. Soc. 492–494.Google Scholar
  37. Wilson, I. R. and Harris, G. M.: 1960,J. Am. Chem. Soc. 82, 4515–4517.Google Scholar
  38. Wilson, I. R. and Harris, G. M.: 1961,J. Am. Chem. Soc. 83, 286–289.Google Scholar
  39. Wood, H. G., Davis, J. J. and Lochmüller, H.: 1966,J. Biol. Chem. 241, 5692–5704.PubMedGoogle Scholar
  40. Wood, H. G.: 1985,Curr. Top. Cell. Reg. 26, 355–369.Google Scholar
  41. Yamagata, Y., Watanabe, H., Saitoh, M. and Namba, T.: 1991,Nature 352, 516–519.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Anthony D. Keefe
    • 1
  • Stanley L. Miller
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaSan Diego, La JollaUSA
  2. 2.NASA AMES Research CenterMoffett Field

Personalised recommendations