Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The γ-irradiation of aqueous acetic acid-clay suspensions

  • 53 Accesses

  • 7 Citations


γ-radiolysis of 0.8 mol dm−3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite (1–3 g per 10 cm−3). The systems were irradiated at their natural pH (3.5), and 25 °C in a dose range from 0.01 to 500 kGy. H2, CH4, CO, CO2, and a variety of polycarboxylic acids were formed in all systems. The major features of the radiolysis in the presence of clays were: (1) More solute molecules were decomposed; (2) Carbon dioxide was produced in higher yield; (3) The yield of methane was unaffected; and (4) 44% less polycarboxylic acids were formed. Three possible mechanisms that could account for the observed changes are suggested. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

This is a preview of subscription content, log in to check access.


  1. Allen, A.: 1948,J. Phys. Chem. 52, 479.

  2. Bernal, J. D.: 1951,The Physical Basis of Life, Routledge and Kegan Paul, London.

  3. Burr, H. G.: 1951,J. Phys. Chem. 61, 1481.

  4. Buxton, G. V., Greenstock, C. L., Helman, W. P. and Ross, A. B.: 1988,J. Phys. Chem. Ref. Data 17, 513.

  5. Castillo, S., Negrón-Mendoza, A., Draganić, Z. D. and Draganić, I. G.: 1985,Radiat. Phys. Chem. 26, 437.

  6. Draganić, I. G. and Draganić, Z. D.: 1971,Radiation Chemistry of Water, Academic Press, New York.

  7. Draganić, I. G. and Draganić, Z. D.: 1980,Radiat. Phys. Chem. 15, 195.

  8. Ferris, J. P., Hagan, W. J. Jr., Alwis, K. W. and McCrea, J.: 1982,J. Mol. Evol. 18, 304.

  9. Fripiat, J. J. and Cruz-Cumplido, M. I.: 1974,Ann. Rev. Earth Planetary Sci. 2, 239.

  10. Garrison, W. M., Haymond, H. R., Morrison, D. C., Weeks, B. M. and Gile-Melchert, J.: 1953,J. Am. Chem. Soc. 77, 2459.

  11. Garrison, W. M., Bennett, W., Cole, S., Haymond, H. R. and Weeks, B. M.: 1955,J. Am. Chem. Soc. 77, 2720.

  12. Grim, R. E.: 1968,Clay Mineralogy, McGraw-Hill Book Co, New York, pp. 596.

  13. Hayon, E. and Weiss, J.: 1960,J. Chem. Soc. 5091.

  14. Josimović, Lj. and Draganić, I.: 1973,Radiat. Phys. Chem. 5, 505.

  15. Navarro-González, R., Negrón-Mendoza, A., Aguirre-Caldéron, M. E. and Ponnamperuma, C.: 1989,Adv. Space Res. 9, (6)57.

  16. Negrón-Mendoza, A. and Ponnamperuma, C.: 1976,Origins of Life 7, 191.

  17. Negrón-Mendoza, A. and Ponnamperuma, C.: 1982,Photochem. and Photobiol. 36, 595.

  18. Negrón-Mendoza, A., Draganić, Z. D., Navarro-González, R., and Draganić, I. G.: 1983,Rad. Res. 95, 248.

  19. Negrón-Mendoza, A., Castillo, S. and Torres, J. L.: 1984,Rev. Soc. Quim. Mex. 28, 21.

  20. Ponnamperuma, C., Shimoyama, A. and Friebele, E.: 1982,Origins of Life 12, 9.

  21. Ross, A. B. and Neta, P.: 1982,Rate Constants for Reaction of Aliphatic Carbon-Centered Radicals in Aqueous Solution, NSRDS-NBS-70, Washington, D.C.

  22. Shimoyama, A. and Johns, W. D.: 1971,Nature 232, 140.

Download references

Author information

Correspondence to Rafael Navarro-González.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Negrón-Mendoza, A., Navarro-González, R. The γ-irradiation of aqueous acetic acid-clay suspensions. Origins Life Evol Biosphere 20, 377–387 (1990). https://doi.org/10.1007/BF01808132

Download citation


  • Radiation
  • Acetic
  • Clay
  • Methane
  • Dioxide