Journal of Inherited Metabolic Disease

, Volume 12, Issue 1, pp 41–46 | Cite as

The role of the blood-brain barrier in the aetiology of permanent brain dysfunction in hyperphenylalaninaemia

  • F. A. Hommes
Article

Summary

Calculations on the rate of entry of the neutral amino acids into the brain via the blood-brain barrier show that a considerable decrease in this rate, particularly for tryptophan and tyrosine, takes place in histidinaemia and tyrosinaemia, type II. These conditions are, however, not associated with mental retardation. It is therefore concluded that effects at the blood-brain barrier alone do not provide an adequate explanation for the aetiology of permanent brain dysfunction in hyperphenylalaninaemia.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baños, G., Daniel, P. M., Moorhouse, S. R. and Pratt, O. E. Inhibition of entry of some amino acids into the brain with observations on mental retardation in the amino acidurias.Psychol. Med. 4 (1977) 262–270Google Scholar
  2. Berger, R., Springer, J. and Hommes, F. A. Brain protein and myelin metabolism in young hyperphenylalaninemic rats.Mol. Cell Biol. 26 (1980) 31–36Google Scholar
  3. Berry, H. K., Bofinger, M. K., Hunt, M. M., Phillips, P. J. and Guilfaile, M. B. Reduction of cerebrospinal fluid phenylalanine after oral administration of valine, isoleucine and leucine.Pediatr. Res. 16 (1982) 751–755PubMedGoogle Scholar
  4. Berry, H. K., Jordan, M. K., Brunner, R. L. and Hunt, M. M. Preliminary support for the oral administration of valine, isoleucine and leucine for phenylketonuria.Dev. Med. Child. Neurol. 27 (1985) 33–39PubMedGoogle Scholar
  5. Buist, N. R. M., Kennaway, N. G. and Fellman, J. H. Tyrosinemia type II: hepatic cytsol tyrosine aminotransferase deficiency (The ‘Richner-Hahnart Syndrome’). In Bickel, H. and Wachtel, U. (eds)Inherited Diseases of Amino Acid Metabolism. Recent Progress in the Understanding, Recognition and Management, Thieme Verlag, Stuttgart, 1985, pp. 203–235Google Scholar
  6. Christensen, H. N. Where do the depleted plasma amino acids go in phenylketonuria?Biochem. J. 236 (1986) 929–930PubMedGoogle Scholar
  7. Coulombe, J. T., Kammerer, B. L., Levy, H. L., Hirsch, B. Z. and Scriver, C. R. Histidinaemia. Part III: Impact; a prospective study.J. Inher. Metab. Dis. 6 (1983) 58–61PubMedGoogle Scholar
  8. Curtius, H. Ch., Niederwieser, A., Viscontini, M., Leimbacher, W., Wegman, H., Biehova, B., Rey, F., Schaub, J. and Schmidt, H. Serotonin and dopamine synthesis in phenylketonuria.Exp. Med. Biol. 133 (1981) 277–291Google Scholar
  9. Elsas, L. J. and Trotter, J. F. Changes in physiological concentrations of blood phenylalanine produce sensitive parameters of human brain function. In Wurtman, R. J. and Rittar-Walker, E. (eds)Dietary Phenylalanine and Brain Function, Birkhäuser, Boston, 1988, pp. 187–195Google Scholar
  10. Hommes, F. A., Eller, G. A. and Taylor, E. H. Turnover of the fast component of myelin and myelin proteins in experimental hyperphenylalaninaemia. Relevance to termination of dietary treatment.J. Inher. Metab. Dis. 5 (1982) 21–27PubMedGoogle Scholar
  11. Kacser, H. and Burns, J. A. Molecular democracy: who shares the controls.Biochem. Soc. Trans. 7 (1979) 1149–1161PubMedGoogle Scholar
  12. Krause, W., Epstein, C., Averbrook, A., Dembure, P. and Elsas, L. Phenylalanine alters the mean power frequency of electroencephalograms and plasmaL-Dopa in treated patients with phenylketonuria.Pediatr. Res. 20 (1986) 1112–1116PubMedGoogle Scholar
  13. Krause, W., Halminski, M., McDonald, L., Dembure, P., Salvo, R., Freides, D. and Elsas, L. Biochemical and neuropsychological effects of elevated phenylalanine in patients with treated phenylketonuria.J. Clin. Invest. 75 (1985) 40–48PubMedGoogle Scholar
  14. La Du, B. N. Histidinemia. In Stanbury, J. B., Wyngaarden, J. B. and Frederickson, D. S. (eds)The Metabolic Basis of Inherited Disease, McGraw-Hill, New York, 1978, pp. 317–327Google Scholar
  15. Linneweh, F. and Ehrlich, M. Zur pathogenase des Schwachsinns bei Phenylketonurie.Klin. Wschr. 40 (1960) 225–226Google Scholar
  16. Lou, H. C. Large doses of tryptophan and tyorsine as potential therapeutic alternative to dietary phenylalanine restriction in phenylketonuria.Lancet 2 (1985) 150–151Google Scholar
  17. Lou, H. C., Güttler, F., Lykkelund, C., Bruhn, P. and Neiderwieser, A. Decreased vigilance and neurotransmitter synthesis after discontinuation of dietary treatment for phenylketonuria in adolescents.Eur. J. Pediatr. 144 (1985) 17–20PubMedGoogle Scholar
  18. Lou, H. C., Lykkelund, C., Gerdes, A. M., Udesen, H. and Bruhn, P. Increased vigilance and dopamine synthesis by large doses of tryosine or phenylalanine restriction in phenylketonuria.Acta Paediatr. Scand. 76 (1987) 560–565PubMedGoogle Scholar
  19. McKean, C. M. The effects of high phenylalanine concentrations on serotonin and catecholamine metabolism in the human brain.Brain Res. 47 (1972) 469–476PubMedGoogle Scholar
  20. Oldendorf, W. H., Sisson, W. B. and Silverstein, A. Reduced brain uptake of selenomethionine-Se-75 in phenylketonuria.Arch. Neurol. 24 (1971) 524–528PubMedGoogle Scholar
  21. Pardridge, W. M. Brain Metabolism: A perspective from the blood-brain barrier.Physiol. Rev. 63 (1983) 1481–1535PubMedGoogle Scholar
  22. Pardridge, W. M. Phenylalanine transport at the human blood-brain barrier. In Wurtman, R. J. and Ritter-Walker, E. (eds)Dietary Phenylalanine and Brain Function, Birkhäuser, Boston, 1988, pp. 55–62Google Scholar
  23. Pardridge, W. M. and Choi, Th.D. Neutral amino acid transport at the human blood-brain barrier.Fed. Proc. 45 (1986) 2073–2078PubMedGoogle Scholar
  24. Pratt, O. E. A new approach to the treatment of phenylketonuria.J. Ment. Def. Res. 24 (1980) 203–217Google Scholar
  25. Pratt, O. E. The need of the brain for amino acids and how they are transported across the blood-brain barrier. In Belton, N. R. and Toothill, C. (eds)Transport and Inherited Disease, MTP Press, Boston, 1981, pp. 87–122Google Scholar
  26. Rosenmann, A., Scriver, C. R., Clow, C. L. and Levy, H. L. Histidinaemia. Part II: Impact; a retrospective study.J. Inher. Metab. Dis. 6 (1983) 54–57PubMedGoogle Scholar
  27. Scriver, C. R. and Levy, H. L. Histidinaemia. Part I: Reconciling retrospective and prospective findings.J. Inher. Metab. Dis. 6 (1983) 31–53PubMedGoogle Scholar
  28. Snyderman, S. E., Sansorieg, C. and Pulmones, M. T. Successful long-term therapy of biopterin deficiency.J. Inher. Metab. Dis. 10 (1987) 260–266PubMedGoogle Scholar
  29. Tada, K., Tateda, H., Arishima, S., Soksi, K., Kitagawa, T., Aoki, K., Suwa, S., Kawamura, M., Oura, T., Takesada, M., Kuroda, Y., Yamashita, F., Matsuda, I. and Naruse, H. Intellectual development in patients with untreated histidinemia.J. Pediatr. 101 (1982) 562–563PubMedGoogle Scholar
  30. Tada, K., Tateda, H., Arishima, S., Soksi, K., Kitagawa, T., Aoki, K., Suwa, S., Kawamura, M., Oura, T., Takesada, M., Kuroda, Y., Yamashita, F., Matsuda, I. and Naruse, H. Follow-up of a nationwide screening for inborn errors of metabolism in Japan.Eur. J. Pediatr. 142 (1984) 204–207PubMedGoogle Scholar
  31. Taylor, E. H. and Hommes, F. A. Effect of experimental hyperphenylalaninemia on myelin metabolism at later stages of brain development.Int. J. Neurosci. 20 (1983) 217–228PubMedGoogle Scholar
  32. Voorhees, C. V., Butcher, R. E. and Berry, H. K. Progress in experimental phenylketonuria: a critical review.Neurosci. Biobehav. Rev. 5 (1981) 177–190PubMedGoogle Scholar

Copyright information

© SSIEM and Kluwer Academic Publishers 1989

Authors and Affiliations

  • F. A. Hommes
    • 1
  1. 1.Department of Cell and Molecular BiologyMedical College of GeorgiaAugustaUSA

Personalised recommendations