Journal of Inherited Metabolic Disease

, Volume 13, Issue 4, pp 435–441 | Cite as

Molecular genetics of phosphorylase kinase: cDNA cloning, chromosomal mapping and isoform structure

  • M. W. Kilimann


A deficiency in phosphorylase kinase is responsible for several forms of glycogen storage disease which differ in heredity and affected tissues. This is so because phosphorylase kinase consists of four different subunits and has multiple tissue-specific isoforms. To elucidate the molecular basis of phosphorylase kinase deficiencies, the cDNAs encoding the subunitsα andβ were cloned and sequenced. Each subunit was shown to be encoded by a single gene. Theα subunit gene was mapped to chromosome Xq12–q13 and theβ subunit gene to chromosome 16q12–q13. Isoform cDNAs reveal differential mRNA splicing. Thus, the stage is set for the molecular characterization of the genes and their deficiency mutations.


Molecular Basis cDNA Cloning Molecular Characterization Molecular Genetic Phosphorylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abarbanel, J.M., Bashan, N., Potashnik, R., Osimani, A., Moses, S.W. and Herishanu, Y. Adult muscle phosphorylaseb kinase deficiency.Neurology 36 (1986) 560–562Google Scholar
  2. Barnard, P.J., Derry, J.M.J., Ryder-Cook, A.S., Zander, N.F. and Kilimann, M.W. Mapping of the phosphorylase kinaseα subunit gene on the mouse X chromosome.Cytogenet. Cell Genet., 1990 in pressGoogle Scholar
  3. Bender, P.K. and Emerson, C.P. Skeletal muscle phosphorylase kinase catalytic subunit mRNAs are expressed in heart tissue but not in liver.J. Biol. Chem. 262 (1987) 8799–8805Google Scholar
  4. Bender, P.K., Dedman, J.R. and Emerson, C.P. The abundance of calmodulin mRNAs is regulated in phosphorylase kinase-deficient skeletal muscle.J. Biol. Chem. 263 (1988) 9733–9737Google Scholar
  5. Chamberlain, J.S., Van Tuinen, P., Reeves, A.A., Philip, B.A. and Caskey, C.T. Isolation of cDNA clones for the catalyticγ subunit of mouse muscle phosphorylase kinase: expression of mRNA in normal and mutant Phk mice.Proc. Natl. Acad. Sci. USA 84 (1987) 2886–2890Google Scholar
  6. Cohen, P.T.W. and Cohen, P. The molecular basis of muscle phosphorylase kinase deficiency in I-strain mice. In Randle, P.J., Steiner, D.F. and Whelan, W.J. (eds.),Carbohydrate Metabolism and its Disorders, Vol. 3, Academic Press, London, 1981, pp. 119–138Google Scholar
  7. Cremers, F.P.M., van de Pol, D.J.R., Diergaarde, D.J., Wieringa, B., Nussbaum, R.L., Schwartz, M. and Ropers, H.H., Physical fine mapping of the chorioideremia locus using Xq21 deletions associated with complex syndromes.Genomics 4 (1989) 41–46Google Scholar
  8. da Cruz e Silva, E.F. and Cohen, P.T.W. Isolation and sequence analysis of a cDNA clone encoding the entire catalytic subunit of phosphorylase kinase.FEBS Lett. 220 (1987) 36–42Google Scholar
  9. Eishi, Y., Takemura, T., Sone, R., Yamamura, H., Narisawa, K., Ichinohasama, R., Tanaka, M. and Hatakeyama, S. Glycogen storage disease confined to the heart with deficient activity of cardiac phosphorylase kinase: A new type of glycogen storage disease.Hum. Pathol. 16 (1985) 193–197Google Scholar
  10. Fischer, R., Koller, M., Flura, M., Mathews, S., Strehler-Page, M.-A., Krebs, J., Penniston, J.T., Carafoli, E. and Strehler, E.E. Multiple divergent mRNAs code for a single human calmodulin.J. Biol. Chem. 263 (1988) 17055–17062Google Scholar
  11. Francke, U., Darras, B.T., Zander, N.F. and Kilimann, M.W. Assignment of human genes for phosphorylase kinase subunitsα (PHKA) to Xq12–q13 andβ (PHKB) to 16q12–q13.Am. J. Hum. Genet. 45 (1989) 276–282Google Scholar
  12. Huijing, F. and Fernandes, J. X-Chromosomal inheritance of liver glycogenosis with phosphorylase kinase deficiency.Am. J. Hum. Genet. 21 (1969) 275–284Google Scholar
  13. Kilimann, M.W., Zander, N.F., Kuhn, C.C., Crabb, J.W., Meyer, H.E. and Heilmeyer, L.M.G. Jr. Theα andβ subunits of phosphorylase kinase are homologous: cDNA cloning and primary structure of theβ subunit.Proc. Natl. Acad. Sci. USA 85 (1988) 9381–9385Google Scholar
  14. Lebo, R.V., Gorin, F., Fletterick, F.J., Kao, F.-T., Cheung, M.C., Bruce, B.D. and Kan, Y.W. High-resolution chromosome sorting and DNA spot-blot analysis assign McArdle's syndrome to chromosome 11.Science 225 (1984) 57–59Google Scholar
  15. Lederer, G., van de Werve, G., de Barsy, Th. and Hers, H.G. The autosomal form of phosphorylase kinase deficiency in man: Reduced activity of the muscle enzyme.Biochem. Biophys. Res. Commun. 92 (1980) 169–174Google Scholar
  16. Lerner, A., Iancu, T.C., Bashan, N., Potashnik, R. and Moses, S. A new variant of glycogen storage disease.Am. J. Dis. Child 136 (1982) 406–410Google Scholar
  17. Lyon, J.B. The X chromosome and the enzymes controlling muscle glycogen: phosphorylase kinase.Biochem. Genet. 4 (1970) 169–175Google Scholar
  18. Malthus, R., Clark, D.G., Watts, C. and Sneyd, J.G.T. Glycogen storage disease in rats: a genetically determined deficiency of liver phosphorylase kinase.Biochem. J. 188 (1980) 99–106Google Scholar
  19. Newgard, C.B., Fletterick, R.J., Anderson, L.A. and Lebo, R.V. The polymorphic locus for glycogen storage disease VI (liver glycogen phosphorylase) maps to chromosome 14.Am. J. Hum. Genet. 40 (1987) 351–364Google Scholar
  20. Newgard, C.B., Littmann, D.R., van Genderen, C., Smith, M. and Fletterick, R.J. Human brain glycogen phosphorylase.J. Biol. Chem. 263 (1988) 3850–3857Google Scholar
  21. Ohtani, Y., Matsuda, I., Iwamasa, T., Tamari, H., Origuchi, Y. and Miike, T. Infantile glycogen storage myopathy in a girl with phosphorylase kinase deficiency.Neurology 32 (1982) 833–838Google Scholar
  22. Pickett-Gies, C.R. and Walsh, D.A. Phosphorylase kinase. In Boyer, P.D. and Krebs, E.G. (eds.),The Enzymes, Vol. 17, Academic Press, Orlando, FL, 1986, pp. 395–459Google Scholar
  23. Scambler, P.J., McPherson, M.A., Bates, G., Bradbury, N.A., Dormer, R.L. and Williamson, R. Biochemical and genetic exclusion of calmodulin as the site of the basic defect in cystic fibrosis.Hum. Genet. 76 (1987) 278–282Google Scholar
  24. Schimke, R.N., Zakheim, R.M., Corder, R.C. and Hug, G. Glycogen storage disease type IX: benign glycogenosis of liver and hepatic phosphorylase kinase deficiency.J. Pediatr. 83 (1973) 1031–1034Google Scholar
  25. Servidei, S., Metlay, L.A., Chodosh, J. and DiMauro, S. Fatal infantile cardiopathy caused by phosphorylaseb kinase deficiency.J. Pediatr. 113 (1988) 82–85Google Scholar
  26. Zander, N.F., Meyer, H.E., Hoffmann-Posorske, E., Crabb, J.W., Heilmeyer, L.M.G. Jr. and Kilimann, M.W. cDNA cloning and complete primary structure of skeletal muscle phosphorylase kinase (α subunit).Proc. Natl. Acad. Sci. USA 85 (1988) 2929–2933Google Scholar

Copyright information

© SSIEM and Kluwer Academic Publishers 1990

Authors and Affiliations

  • M. W. Kilimann
    • 1
  1. 1.Institut für Physiologische Chemie (Abteilung für Biochemie Supramolekularer Systeme)Ruhr-Universität BochumBochum 1FRG

Personalised recommendations