Journal of Inherited Metabolic Disease

, Volume 19, Issue 4, pp 504–520 | Cite as

Neurological presentations of mitochondrial diseases

  • M. Zeviani
  • B. Bertagnolio
  • G. Uziel
Article

Summary

We present here a report on a 5-year experience in clinical investigation, diagnostic management and molecular genetic studies of neuromitochondrial disorders, defined on the basis of morphological, biochemical and genetic findings. Leigh disease is the most frequent clinical presentation in infancy and childhood, but symptoms at onset are poorly informative. In paediatric cases, lactic acidosis and neuroradiological abnormalities are frequent, and can be of help for the diagnostic orientation. In the adult population, muscle weakness, ophthalmoplegia with ragged-red fibres, retinitis pigmentosa, progressive myoclonal ataxia, and early-onset stroke-like episodes, are frequently combined in complex syndromes that are often familial (maternally inherited) and/or associated with well-established mutations in mitochondrial DNA (mtDNA). However, the presence of overlap syndromes and features common to many neuromitochondrial diseases can complicate the clinical evaluation and the diagnostic approach. The pathogenicity of a given mtDNA mutation can frequently be ascertained by correlating the degree of heteroplasmy with the clinical or biochemical phenotypes. Moreover, transmitochondrial cybrids can be used to test the effects of either mitochondrial or nuclear gene abnormalities in a fully controlled, user-friendly and highly informative system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardosi A, Creutzfeld W, DiMauro S, et al (1987) Myo-, neuro-, gastrointestinal encephalopathy (MNGIE syndrome) due to partial deficiency of cytochromec oxidase.Acta Neuropathol 748: 248–258.Google Scholar
  2. Berkovic SF, Andermann F, Shoubridge EA, et al (1991a) Mitochondrial dysfunction in multiple symmetrical lipomatosis.Ann Neurol 29: 566–569.PubMedGoogle Scholar
  3. Berkovic SF, Shoubridge EA, Andermann F, et al (1991b) Clinical spectrum of mitochondrial DNA mutation at base pair 8344.Lancet 338: 457.Google Scholar
  4. Berkovic SF, So NK, Andermann F (1991c) Progressive myoclonus epilepsies: clinical and neurophysiological diagnosis.J Clin Neurophysiol 8: 261–274.PubMedGoogle Scholar
  5. Franceschetti S, Antozzi C, Binelli S, et al (1993) Progressive myoclonus epilepsies: an electroclinical, biochemical, morphological and molecular genetic study of 17 cases.Acta Neurol Scand 87: 219–223.PubMedGoogle Scholar
  6. Graf WD, Sumi SM, Copass MK, et al (1993) Phenotypic heterogeneity in families with the myoclonic epilepsy and ragged-red fibre disease point mutation in mitochondrial DNA.Ann Neurol 33: 640–645.PubMedGoogle Scholar
  7. Holt IJ, Harding AE, Petty RKH, et al (1990) A new mitochondrial disease associated with mitochondrial DNA heteroplasmyAm J Hum Genet 46: 428–433.PubMedGoogle Scholar
  8. Kaukonen J, Amati P, Suomalainen A, et al (1995) Identification of a second autosomal locus predisposing to multiple deletions of mitochondrial DNA.Am J Hum Genet 57 (Supplement): A216 (Abstract 1246).Google Scholar
  9. King M, Attardi G (1989) Human cells lacking mitochondrial DNA: repopulation with exogenous mitochondria by complementation.Science 246: 500–503.PubMedGoogle Scholar
  10. Mariotti C, Tiranti V, Carrara F, Dallapiccola B, DiDonato S, Zeviani M (1994) Defective respiratory capacity and mitochondrial protein synthesis in transformant cybrids harboring the tRNAleu(UUR) mutation associated with maternally inherited myopathy and cardiomyopathy.J Clin Invest 93: 1102–1107.PubMedGoogle Scholar
  11. Mariotti C, Savarese N, Suomalainen A, et al (1995) Genotype to phenotype correlations in mitochondrial encephalomyopathies associated with the A3243G mutation of mitochondrial DNA.J Neurol 242: 304–312.PubMedGoogle Scholar
  12. Mazziotta E, Ricci E, Bertini E, et al (1992) Fatal infantile liver failure associated with mitochondrial DNA depletion.J Pediatrics 121: 896–901.Google Scholar
  13. Medina L, Chi TL, DeVivo DC, et al (1990) MR findings in patients with subacute necrotizing encephalomyopathy (Leigh syndrome): correlation with biochemical defect.Am J Neuroradiol 11: 379–384.PubMedGoogle Scholar
  14. Moraes CT, Shanske S, Tritschler HJ, et al (1991) Mitochondrial DNA depletion with variable tissue expression: a novel genetic abnormality in mitochondrial diseases.Am J Hum Genet 48: 492–501.PubMedGoogle Scholar
  15. Moraes CT, Ciacci F, Silvestri G, et al (1993) Atypical clinical presentations associated with the MELAS mutation at position 3243 of human mitochondrial DNA.Neuromusc Disord 3: 43–50.PubMedGoogle Scholar
  16. Petty RKH, Harding AE, Morgan-Hughes JA (1986) The clinical features of mitochondrial myopathy.Brain 109: 915–938.PubMedGoogle Scholar
  17. Riordan-Eva P, Sanders MD, Govan GG, Sweeney MG, DaCosta J, Harding AE (1995) The clinical features of Leber's hereditary optic neuropathy defined by the presence of a pathogenic mitochondrial DNA mutation.Brain 118: 319–338.PubMedGoogle Scholar
  18. Rowland LP (1994) Mitochondrial encephalomyopathies: lumping, splitting and melding. In Schapira AHV, DiMauro S, eds.Mitochondrial Disorders in Neurology. International Medical Reviews: Neurology, vol. 14. London: Butterworth-Heinemann, 116–144.Google Scholar
  19. Rowland LP, Blake DM, Hirano S, et al (1991) Clinical syndromes associated with ragged-red fibres.Revue Neurologique 290: 457–465.Google Scholar
  20. Rustin P, Chretien D, Bourgeron T, et al (1993) Investigation of respiratory chain activity in human heart.Biochem Med Metab Biol 50: 120–126.PubMedGoogle Scholar
  21. Santorelli FM, Shanske S, Macaya A, DeVivo DC, DiMauro S (1993) The mutation at 8993 of mitochondrial DNA is a common cause of Leigh's syndrome.Ann Neurol 34: 827–834.PubMedGoogle Scholar
  22. Schapira AHV, DiMauro S (eds) (1994)Mitochondrial Disorders in Neurology. International Medical Reviews: Neurology, vol. 14. London: Butterworth-Heinemann.Google Scholar
  23. Shoffner JM, Lott MT, Wallace DC (1991) MERRF: a model disease for understanding the principles of mitochondrial genetics.Revue Neurologique 147: 431–435.PubMedGoogle Scholar
  24. Silvestri G, Ciafaloni E, Santorelli FM, et al (1993) Clinical features associated with the A → G transition at nucleotide 8344 of mtDNA (‘MERFF’ mutation).Neurology 43: 1200–1206.PubMedGoogle Scholar
  25. Silvestri G, Santorelli FM, Shanske S, et al (1994) A new mtDNA mutation in the tRNA(Lys) gene associated with maternally inherited cardiomyopathy.Hum Mutat 3: 37–43.PubMedGoogle Scholar
  26. Suomalainen A, Majander A, Haltia M, et al (1992) Multiple deletions of mitochondrial DNA in several tissues of a patient with severe retarded depression and familial progressive external ophthalmoplegia.J Clin Invest 90: 61–66.PubMedGoogle Scholar
  27. Suomalainen A, Kaukonen J, Amati P, et al (1995) An autosomal locus predisposing to deletions of mitochondrial DNA.Nature Genetics 9: 146–151.PubMedGoogle Scholar
  28. Tatuch Y, Robinson BH (1993) The mitochondrial mutation at 8993 associated with NARP slows the rate of ATP synthesis in isolated lymphoblast mitochondria.Biochem Biophys Res Commun 192: 124–128.PubMedGoogle Scholar
  29. Tatuch Y, Christodoulou J, Feigenbaum A, et al (1992) Heteroplasmic mtDNA mutation (T → G) at 8993 can cause Leigh's disease when the percentage of mtDNA is high.Am J Hum Genet 50: 852–858.PubMedGoogle Scholar
  30. Tatuch Y, Pagon RA, Vlcek B, Roberts R, Korson M, Robinson BH (1994) The 8993 mtDNA mutation: heteroplasmy and clinical presentation in three families.Eur J Hum Genet 2: 35–43.PubMedGoogle Scholar
  31. Tiranti V, Chariot P, Carella F, et al (1995a) Maternally inherited hearing loss, ataxia and myoclonus associated with a novel point mutation in mitochondrial tRNASer(UCN) gene.Hum Mol Genet 4: 1421–1427.PubMedGoogle Scholar
  32. Tiranti V, Munaro M, Sandonà D, et al (1995b) Nuclear DNA origin of cytochromec oxidase deficiency in Leigh's syndrome: genetic evidence based on patient's-derived rho° transformants.Hum Mol Genet 4: 2017–2023.PubMedGoogle Scholar
  33. Uziel G, Tiranti V, Moroni I, et al (1995) Differential diagnosis of Usher and NARP syndromes: a tale of two genomes.J Inher Metab Dis, in press.Google Scholar
  34. Wallace DC, Shoffner JM (1992) Mitochondrial genetics: principles and practice.Am J Hum Genet 51: 1179–1186.PubMedGoogle Scholar
  35. Wallace DC, Lott MT, Brown MD, Huoponen K, Torrino A (1995) Report of the committee on human mitochondrial DNA. In Cuticchia AJ, ed.Human Gene Mapping 1995: A Compendium. Baltimore, MD: Johns Hopkins University Press, 910–954.Google Scholar
  36. Zeviani M (1992) Nucleus-driven mutations of human mitochondrial DNA.J Inher Metab Dis 15: 456–471.PubMedGoogle Scholar
  37. Zeviani M, Taroni F (1994) Mitochondrial diseases. In: Harding AE, ed.Genetics in Neurology. London: Baillière Tindall, 315–334.Google Scholar
  38. Zeviani M, Servidei S, Gellera C, Bertini E, DiMauro S, DiDonato S (1989) An autosomal dominant disorder with multiple deletion of mitochondrial DNA starting at the D-loop region.Nature 339: 309–311.PubMedGoogle Scholar
  39. Zeviani M, Gellera C, Pannacci M, et al (1990) Tissue distribution and transmission of mitochondrial DNA deletions in mitochondrial myopathies.Ann Neurol 28: 94–97.PubMedGoogle Scholar
  40. Zeviani M, Gellera C, Antozzi C, et al (1991a) Maternally-inherited myopathy and cardiomyopathy: association with a new mutation in the mitochondrial DNA tRNALeu(UUR).Lancet 338: 143–147.PubMedGoogle Scholar
  41. Zeviani M, Amati P, Bresolin N, et al (1991b) Rapid detection of the A → G(8344) mutation of mtDNA in Italian families with myoclonus-epilepsy and ragged-red fibers (MERRF).Am J Hum Genet 48: 203–211.PubMedGoogle Scholar

Copyright information

© SSIEM and Kluwer Academic Publishers 1996

Authors and Affiliations

  • M. Zeviani
    • 2
  • B. Bertagnolio
    • 2
  • G. Uziel
    • 1
  1. 1.Division of Child NeurologyIstituto Nazionale Neurologico ‘C. Besta’MilanItaly
  2. 2.Division of Biochemistry & GeneticsNational Neurological Institute ‘Carlo Besta’MilanoItaly

Personalised recommendations