Advertisement

Annali di Matematica Pura ed Applicata

, Volume 123, Issue 1, pp 35–58 | Cite as

The sixteen classes of almost Hermitian manifolds and their linear invariants

  • Alfred Gray
  • Luis M. Hervella
Article

Summary

It is shown that in a natural way there are precisely sixteen classes of almost Hermitian manifolds.

Keywords

Hermitian Manifold Linear Invariant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Avez -A. Lichnerowicz -A. Diaz-Miranda,Sur l'algèbre des automorphismes infinitésimaux d'une variété symplectique, J. Differential Geometry,9 (1974), pp. 1–40.Google Scholar
  2. [2]
    M. Berger -P. Gauduchon -E. Mazet,Le spectre d'une variété riemannienne, Lecture Notes in Mathematics, vol. 194, Springer-Verlag, Berlin and New York, 1971.Google Scholar
  3. [3]
    P. Dombrowski,On the geometry of the tangent bundle, J. Reine Angew. Math.,210 (1962), pp. 73–88.Google Scholar
  4. [4]
    H. Donnelly,Invariance theory of Hermitian manifolds, Proc. Amer. Math. Soc.,58 (1976), pp. 229–233.Google Scholar
  5. [5]
    C. Ehresmann -P. Libermann,Sur les formes différentielles extérieures de degré 2, C. R. Acad. Sci. Paris,227 (1948), pp. 420–421.Google Scholar
  6. [6]
    C. Ehresmann -P. Libermann,Le problème d'équivalence des formes extérieures quadratiques, C. R. Acad. Sci. Paris,229 (1949), pp. 697–698.Google Scholar
  7. [7]
    M. Fernández -L. M. Hervella,Un exemple de variété pseudokählérienne, C. R. Acad. Sci. Paris, 283 (1976), pp. 203–205.Google Scholar
  8. [8]
    P. Gilkey,Spectral geometry and the Kähler condition for complex manifolds, Invent. Math.,26 (1974), pp. 231–258.Google Scholar
  9. [9]
    A. Gray,Minimal varieties and almost Hermitian submanifolds, Michigan Math. J.,12 (1965), pp. 273–279.Google Scholar
  10. [10]
    A. Gray,Some examples of almost Hermitian manifolds, Illinois J. Math.,10 (1969), pp. 353–366.Google Scholar
  11. [11]
    A. Gray,Vector cross products on manifolds, Trans. Amer. Math. Soc.,141 (1969), pp. 465–504.Google Scholar
  12. [12]
    A. Gray,Riemannian manifolds with geodesic symmetries of order 3, J. Differential Geometry,7 (1972), pp. 343–369.Google Scholar
  13. [13]
    A. Gray,The volume of a small geodesic ball in a Riemannian manifold, Michigan Math. J.,20 (1973), pp. 329–344.Google Scholar
  14. [14]
    A. Gray,The structure of nearly Kähler manifolds, Math. Ann.,223 (1976), pp. 233–248.Google Scholar
  15. [15]
    A. Gray,Curvature identities for Hermitian and almost Hermitian manifolds, Tôhoku Math. J.,28 (1976), pp. 601–612.Google Scholar
  16. [16]
    L. M. Hervella -E. Vidal,Nouvelles géométries pseudo-kählériennes G1 et G2, C. R. Acad. Sci. Paris,283 (1976), pp. 115–118.Google Scholar
  17. [17]
    L. M.Hervella - E.Vidal,New pseudo-Kähler geometries, to appear.Google Scholar
  18. [18]
    N. Iwahori,Some remarks on tensor invariants of O(n), U(n), Sp(n), J. Math. Soc. Japan,10 (1958), pp. 145–160.Google Scholar
  19. [19]
    K. Kodaira -J. Morrow,Complex Manifolds, Holt, Rinehart and Winston, New York, 1971.Google Scholar
  20. [20]
    S. Kotō,Some theorems on almost Kählerian spaces, J. Math. Soc. Japan,12 (1960), pp. 422–433.Google Scholar
  21. [21]
    H. C. Lee,A kind of even-dimensional differential geometry and its application to exterior calculus, Amer. J. Math.,65 (1943), pp. 433–438.Google Scholar
  22. [22]
    T.Lepage,Sur certaines congruences de formes alternées, Bull. Sci. Roy. Soc. Liège (1946), pp. 21–31.Google Scholar
  23. [23]
    P. Libermann,Sur le problème d'équivalence, Thèse, Strasbourg 1953, Ann. Mat. Pura Appl.,36 (1954), pp. 27–120.Google Scholar
  24. [24]
    P.Libermann,Sur la classification des structures hermitiennes, to appear.Google Scholar
  25. [25]
    G.Papy,Sur le divisibilité des formes alternées, Bull. Soc. Roy. Sci. Liège (1946), p. 24.Google Scholar
  26. [26]
    W. P. Thurston,Some examples of symplectic manifolds, Proc. Amer. Math. Soc.,55 (1976), pp. 467–468.Google Scholar
  27. [27]
    I. Vaisman,On locally conformal almost Kähler manifolds, Israel J. Math.,24 (1976) pp. 338–351.Google Scholar
  28. [28]
    E.Vidal Abascal,Algunos resultados sobre variedades casihermiticas, Actas del V congresso de la agrupación de matematicos de expression latina, Palma, 1978.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1980

Authors and Affiliations

  • Alfred Gray
    • 1
  • Luis M. Hervella
    • 2
  1. 1.College ParkUSA
  2. 2.Santiago de CompostelaSpain

Personalised recommendations