The sixteen classes of almost Hermitian manifolds and their linear invariants
Article
- 756 Downloads
- 263 Citations
Summary
It is shown that in a natural way there are precisely sixteen classes of almost Hermitian manifolds.
Keywords
Hermitian Manifold Linear Invariant
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]A. Avez -A. Lichnerowicz -A. Diaz-Miranda,Sur l'algèbre des automorphismes infinitésimaux d'une variété symplectique, J. Differential Geometry,9 (1974), pp. 1–40.Google Scholar
- [2]M. Berger -P. Gauduchon -E. Mazet,Le spectre d'une variété riemannienne, Lecture Notes in Mathematics, vol. 194, Springer-Verlag, Berlin and New York, 1971.Google Scholar
- [3]P. Dombrowski,On the geometry of the tangent bundle, J. Reine Angew. Math.,210 (1962), pp. 73–88.Google Scholar
- [4]H. Donnelly,Invariance theory of Hermitian manifolds, Proc. Amer. Math. Soc.,58 (1976), pp. 229–233.Google Scholar
- [5]C. Ehresmann -P. Libermann,Sur les formes différentielles extérieures de degré 2, C. R. Acad. Sci. Paris,227 (1948), pp. 420–421.Google Scholar
- [6]C. Ehresmann -P. Libermann,Le problème d'équivalence des formes extérieures quadratiques, C. R. Acad. Sci. Paris,229 (1949), pp. 697–698.Google Scholar
- [7]M. Fernández -L. M. Hervella,Un exemple de variété pseudokählérienne, C. R. Acad. Sci. Paris, 283 (1976), pp. 203–205.Google Scholar
- [8]P. Gilkey,Spectral geometry and the Kähler condition for complex manifolds, Invent. Math.,26 (1974), pp. 231–258.Google Scholar
- [9]A. Gray,Minimal varieties and almost Hermitian submanifolds, Michigan Math. J.,12 (1965), pp. 273–279.Google Scholar
- [10]A. Gray,Some examples of almost Hermitian manifolds, Illinois J. Math.,10 (1969), pp. 353–366.Google Scholar
- [11]A. Gray,Vector cross products on manifolds, Trans. Amer. Math. Soc.,141 (1969), pp. 465–504.Google Scholar
- [12]A. Gray,Riemannian manifolds with geodesic symmetries of order 3, J. Differential Geometry,7 (1972), pp. 343–369.Google Scholar
- [13]A. Gray,The volume of a small geodesic ball in a Riemannian manifold, Michigan Math. J.,20 (1973), pp. 329–344.Google Scholar
- [14]A. Gray,The structure of nearly Kähler manifolds, Math. Ann.,223 (1976), pp. 233–248.Google Scholar
- [15]A. Gray,Curvature identities for Hermitian and almost Hermitian manifolds, Tôhoku Math. J.,28 (1976), pp. 601–612.Google Scholar
- [16]L. M. Hervella -E. Vidal,Nouvelles géométries pseudo-kählériennes G1 et G2, C. R. Acad. Sci. Paris,283 (1976), pp. 115–118.Google Scholar
- [17]
- [18]N. Iwahori,Some remarks on tensor invariants of O(n), U(n), Sp(n), J. Math. Soc. Japan,10 (1958), pp. 145–160.Google Scholar
- [19]
- [20]S. Kotō,Some theorems on almost Kählerian spaces, J. Math. Soc. Japan,12 (1960), pp. 422–433.Google Scholar
- [21]H. C. Lee,A kind of even-dimensional differential geometry and its application to exterior calculus, Amer. J. Math.,65 (1943), pp. 433–438.Google Scholar
- [22]T.Lepage,Sur certaines congruences de formes alternées, Bull. Sci. Roy. Soc. Liège (1946), pp. 21–31.Google Scholar
- [23]P. Libermann,Sur le problème d'équivalence, Thèse, Strasbourg 1953, Ann. Mat. Pura Appl.,36 (1954), pp. 27–120.Google Scholar
- [24]P.Libermann,Sur la classification des structures hermitiennes, to appear.Google Scholar
- [25]G.Papy,Sur le divisibilité des formes alternées, Bull. Soc. Roy. Sci. Liège (1946), p. 24.Google Scholar
- [26]W. P. Thurston,Some examples of symplectic manifolds, Proc. Amer. Math. Soc.,55 (1976), pp. 467–468.Google Scholar
- [27]I. Vaisman,On locally conformal almost Kähler manifolds, Israel J. Math.,24 (1976) pp. 338–351.Google Scholar
- [28]E.Vidal Abascal,Algunos resultados sobre variedades casihermiticas, Actas del V congresso de la agrupación de matematicos de expression latina, Palma, 1978.Google Scholar
Copyright information
© Fondazione Annali di Matematica Pura ed Applicata 1980