Journal of Molecular Evolution

, Volume 17, Issue 5, pp 273–284 | Cite as

Reasons for the occurrence of the twenty coded protein amino acids

  • Arthur L. Weber
  • Stanley L. Miller


Factors involved in the selection of the 20 protein L-α-amino acids during chemical evolution and the early stages of Darwinian evolution are discussed. The selection is considered on the basis of the availability in the primitive ocean, function in proteins, the stability of the amino acid and its peptides, stability to racemization, and stability on the transfer RNA. We conclude that aspartic acid, glutamic acid, arginine, lysine, serine and possibly threonine are the best choices for acidic, basic and hydroxy amino acids. The hydrophobic amino acids are reasonable choices, except for the puzzling absences ofα-amino-n-butyric acid, norvaline and norleucine. The choices of the sulfur and aromatic amino acids seem reasonable, but are not compelling. Asparagine and glutamine are apparently not primitive. If life were to arise on another planet, we would expect that the catalysts would be poly-α-amino acids and that about 75% of the amino acids would be the same as on the earth.

Key words

Amino acids Molecular evolution Genetic Code Protein synthesis Prebiotic synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson FB, Furst CI, McMartin C, Wade R (1969) Biochem J 113:143–156Google Scholar
  2. Adcock B, Lawson A, Miles DH (1961) J Chem Soc:5120–5127Google Scholar
  3. Andrews PR, Smith GD, Young IG (1973) Biochemistry 12:3492–3498Google Scholar
  4. Anfinsen CB, Corley LG (1969) J Biol Chem 244:5149–5152Google Scholar
  5. Bada JL, Miller SL (1968) Science 159:423–425Google Scholar
  6. Bada JL, Shou M, Man EH, Schroeder RA (1978) Earth Planet Sci Lett 41:67–76Google Scholar
  7. Balasubramanian D (1974) Biopolymers 13:407–410Google Scholar
  8. Balasubramanian D, Kalita CC, Kovacs J (1973) Biopolymers 12:1089–1098Google Scholar
  9. Barrell BG, Bankier AT, Drouin J (1979) Nature 282:189–194Google Scholar
  10. Belec J, Jenness R (1962) Biochim Biophys Acta 63:512–514Google Scholar
  11. Bonner WA (1972) Origins of molecular chirality. In: Ponnamperuma C (ed) Exobiology. North-Holland, Amsterdam, p 170Google Scholar
  12. Brack A, Spach G (1980) J Mol Evol 15:231–238Google Scholar
  13. Bruice TC, Herz JL (1964) J Am Chem Soc 86:4109–4116Google Scholar
  14. Bruice TC, Sturtevant JM (1959) J Am Chem Soc 81:2860–2870Google Scholar
  15. Burgess AW, Leach SJ (1973) Biopolymers 12:2599–2605Google Scholar
  16. Cowie DB, Cohen GN, Bolton ET, Robichon-Szulmajster HDe (1959) Biochim Biophys Acta 34:39–46Google Scholar
  17. Crick FHC (1966) J Mol Biol 19:548–555Google Scholar
  18. Crick FHC (1967) Nature 213:119Google Scholar
  19. Crick FHC (1968) J Mol Biol 38:367–379Google Scholar
  20. Crick FHC, Brenner S, Klug A, Pieczenik G (1976) Origins of Life 7:389–397Google Scholar
  21. Cronin JR, Moore CB (1971) Science 172:1327–1329Google Scholar
  22. Danishefsky S, Hirama M, Fritsch N, Clardy J (1979) J Am Chem Soc 101:7013–7018Google Scholar
  23. Deslauriers R, Walter R, Smith CP (1973) FEBS Lett 37:27–32Google Scholar
  24. Eigen M, Schuster P (1978) Naturwissenschaften 65:341–369Google Scholar
  25. Fahnestock S, Rich A (1971) Science 173:340–343Google Scholar
  26. Fickel TE, Gilvarg C (1973) J Org Chem 38:1421–1423Google Scholar
  27. Friedmann N, Haverland WJ, Miller SL (1971) Prebiotic synthesis of aromatic and other amino acids. In: Buvet R, Ponnamperuma C (eds) Chemical evolution and the origin of life. North-Holland, Amsterdam, p 123Google Scholar
  28. Friedmann N, Miller SL (1969) Science 166:766–767Google Scholar
  29. Gatica M, Allende CC, Mora G, Allende JE, Medina J (1966) Biochim Biophys Acta 129:201–203Google Scholar
  30. Gilbert JB, Price VE, Greenstein JP (1949) J Biol Chem 180:209–218Google Scholar
  31. Glickson JD, Applequist J (1971) J Am Chem Soc 93:3276–3281Google Scholar
  32. Goodman M, Fried M (1967) J Am Chem Soc 89:1264–1267Google Scholar
  33. Gund P, Veber DF (1979) J Am Chem Soc 101:1885–1887Google Scholar
  34. Hamilton PB (1945) J Biol Chem 158:375–395Google Scholar
  35. Hay RW, Morris PJ (1970) J Chem Soc (B):1577–1582Google Scholar
  36. Hay RW, Morris PJ (1972) J Chem Soc Perkin II:1021–1029Google Scholar
  37. Hay RW, Porter LJ (1967) J Chem Soc (B):1261–1264Google Scholar
  38. Hay RW, Porter LJ, Morris PJ (1966) Aust J Chem 19:1197–1205Google Scholar
  39. Hettinger TP, Craig LC (1970) Biochemistry 9:1224–1232Google Scholar
  40. Horowitz NH (1945) Proc Natl Acad Sci USA 31:153–157Google Scholar
  41. Isumiya N, Fu SJ, Birnbaum SM, Greenstein JP (1953) J Biol Chem 205:221–230Google Scholar
  42. Jacobson SJ, Wilson CG, Rapoport H (1974) J Org Chem 39:1074–1077Google Scholar
  43. Jukes TH (1974) Origins of Life 5:331–350Google Scholar
  44. Jungck JR (1978) J Mol Evol 11:211–224Google Scholar
  45. Khare BN, Sagan C (1971) Nature 232:577–579Google Scholar
  46. Kittredge JS, Roberts E (1969) Science 164:37–42Google Scholar
  47. Krayevsky AA, Kukhanova MK (1979) The peptidyltransferase center of ribosomes. In: Cohn WE (ed) Progress in nucleic acid research and molecular biology. Vol. 23. Academic Press, New York, p 1Google Scholar
  48. Kushwaha DRS, Mathur KB, Balasubramanian D (1980) Biopolymers 19:219–229Google Scholar
  49. Kvenvolden K, Lawless J, Pering K, Peterson E, Flores J, Ponnamperuma C, Kaplan IR, Moore C (1970) Nature 228:923–926Google Scholar
  50. Kvenvolden KA Lawless JG, Ponnamperuma C (1971) Proc Natl Acad Sci USA 68:486–490Google Scholar
  51. Lagerkvist U (1978) Proc Natl Acad Sci USA 75:1759–1762Google Scholar
  52. Lawless JG, Levi N (1979) J Mol Evol 13:281–286Google Scholar
  53. Leplawy MT, Jones DS, Kenner GW, Sheppard RC (1960) Tetrahedron 11:39–51Google Scholar
  54. Lipson MA, Sondheimer E (1964) J Org Chem 29:2392–2394Google Scholar
  55. Macino G, Coruzzi G, Nobrega FG, Li M, Tzagoloff A (1979) Proc Natl Acad Sci USA 76:3784–3785Google Scholar
  56. Mark JE, Goodman M (1967) J Am Chem Soc 89:1267–1268Google Scholar
  57. Martin RB, Parcell A, Hedrick RI (1964) J Am Chem Soc 86:2406–2413Google Scholar
  58. Meister A, Bukenberger MW (1962) Nature 194:557–559Google Scholar
  59. Metzler DE, Longenecker JB, Snell EE (1954) J Am Chem Soc 76:639–644Google Scholar
  60. Miller SL (1957) Biochim Biophys Acta 23:480–489Google Scholar
  61. Miller Sl, Orgel LE (1974) The origins of life on the earth. Prentice-Hall, Englewood Cliffs, New Jersey, p 121Google Scholar
  62. Mooz ED (1976) Data on the naturally occuring amino acids. In: Fasman GD (ed) Handbook of biochemistry and molecular biology. proteins, Vol. 1. Chemical Rubber Co. Press, Cleveland, p 111Google Scholar
  63. Nagaraj R, Shamala N, Balaram P (1979) J Am Chem Soc 101:16–20Google Scholar
  64. Nathans D, Neidle A (1963) Nature 197:1076–1077Google Scholar
  65. Norden B (1978) J Mol Evol 11:313–332Google Scholar
  66. Old JM, Jones DS (1975) Biochem Soc Trans 3:659–660Google Scholar
  67. Peltzer ET (1979) Thesis, University of California, San DiegoGoogle Scholar
  68. Peltzer ET, Bada JL (1978) Nature 272:443–444Google Scholar
  69. Poduska K, Katrukha GS, Silaev AB, Rudinger J (1965) Collect Czech Chem Commun 30:2410–2433Google Scholar
  70. Pospisek J, Blaha K (1976) Syntheses of peptides containing a tert-leucine residue. In: Loffet A (ed) Peptides 1976. Editions Universitaires, Brussels, p 95Google Scholar
  71. Reuben J, Polk FE (1980) J Mol Evol 15:103–112Google Scholar
  72. Rich A (1971) The possible participation of esters as well as amides in prebiotic polymers. In: Buvet R, Ponnamperuma C (eds) Chemical evolution and the origin of life. North-Holland, Amsterdam, p 180Google Scholar
  73. Ring D, Wolman Y, Friedmann N, Miller SL (1972) Proc Natl Acad Sci USA 69:765–768Google Scholar
  74. Robinson AB, Scotchler JW, McKerrow JH (1973) J Am Chem Soc 95:8156–8159Google Scholar
  75. Rychlik I, Cerna J, Chladek S, Pulkrabek P, Zemlicka J (1970) Eur J Biochem 16:136–142Google Scholar
  76. Sagan C, Khare BN (1971) Science 173:417–420Google Scholar
  77. Samuel D, Silver BL (1963) J Chem Soc 289–296Google Scholar
  78. Sato M, Okawa K, Akabori S (1957) Bull Chem Soc Japan 30:937–938Google Scholar
  79. Schlesinger G (1968) Dissertation, University of California, San DiegoGoogle Scholar
  80. Schroeder RA, Bada JL (1977) Geochim Cosmochim Acta 41:1087–1095Google Scholar
  81. Thanassi JW (1970) Biochemistry 9:525–532Google Scholar
  82. Uy R, Wold F (1977) Science 198:890–896Google Scholar
  83. Van Trump JE, Miller SL (1972) Science 178:859–860Google Scholar
  84. Van Trump JE, White R, Miller SL (1981) in pressGoogle Scholar
  85. Vallentyne JR (1964) Geochim Cosmochim Acta 28:157–188Google Scholar
  86. Weber AL, Lacey JC Jr (1978) J Mol Evol 11:199–210Google Scholar
  87. Wilson H, Cannan RK (1937) J Biol Chem 119:309–331Google Scholar
  88. Woese CR (1967) The genetic code: The molecular basis for genetic expression. Harper and Row, New YorkGoogle Scholar
  89. Wolman Y, Haverland WJ, Miller SL (1972) Proc Natl Acad Sci USA 69:809–811Google Scholar
  90. Wong JT (1976) Proc Natl Acad Sci USA 73:2336–2340Google Scholar
  91. Wong JT, Bronskill PM (1979) J Mol Evol 13:115–125Google Scholar
  92. Zeitman B, Chang S, Lawless JG (1974) Nature 251:42–43Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Arthur L. Weber
    • 1
  • Stanley L. Miller
    • 2
  1. 1.The Salk Institute for Biological StudiesSan DiegoUSA
  2. 2.Department of ChemistryUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations