Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Reasons for the occurrence of the twenty coded protein amino acids

Summary

Factors involved in the selection of the 20 protein L-α-amino acids during chemical evolution and the early stages of Darwinian evolution are discussed. The selection is considered on the basis of the availability in the primitive ocean, function in proteins, the stability of the amino acid and its peptides, stability to racemization, and stability on the transfer RNA. We conclude that aspartic acid, glutamic acid, arginine, lysine, serine and possibly threonine are the best choices for acidic, basic and hydroxy amino acids. The hydrophobic amino acids are reasonable choices, except for the puzzling absences ofα-amino-n-butyric acid, norvaline and norleucine. The choices of the sulfur and aromatic amino acids seem reasonable, but are not compelling. Asparagine and glutamine are apparently not primitive. If life were to arise on another planet, we would expect that the catalysts would be poly-α-amino acids and that about 75% of the amino acids would be the same as on the earth.

This is a preview of subscription content, log in to check access.

References

  1. Abramson FB, Furst CI, McMartin C, Wade R (1969) Biochem J 113:143–156

  2. Adcock B, Lawson A, Miles DH (1961) J Chem Soc:5120–5127

  3. Andrews PR, Smith GD, Young IG (1973) Biochemistry 12:3492–3498

  4. Anfinsen CB, Corley LG (1969) J Biol Chem 244:5149–5152

  5. Bada JL, Miller SL (1968) Science 159:423–425

  6. Bada JL, Shou M, Man EH, Schroeder RA (1978) Earth Planet Sci Lett 41:67–76

  7. Balasubramanian D (1974) Biopolymers 13:407–410

  8. Balasubramanian D, Kalita CC, Kovacs J (1973) Biopolymers 12:1089–1098

  9. Barrell BG, Bankier AT, Drouin J (1979) Nature 282:189–194

  10. Belec J, Jenness R (1962) Biochim Biophys Acta 63:512–514

  11. Bonner WA (1972) Origins of molecular chirality. In: Ponnamperuma C (ed) Exobiology. North-Holland, Amsterdam, p 170

  12. Brack A, Spach G (1980) J Mol Evol 15:231–238

  13. Bruice TC, Herz JL (1964) J Am Chem Soc 86:4109–4116

  14. Bruice TC, Sturtevant JM (1959) J Am Chem Soc 81:2860–2870

  15. Burgess AW, Leach SJ (1973) Biopolymers 12:2599–2605

  16. Cowie DB, Cohen GN, Bolton ET, Robichon-Szulmajster HDe (1959) Biochim Biophys Acta 34:39–46

  17. Crick FHC (1966) J Mol Biol 19:548–555

  18. Crick FHC (1967) Nature 213:119

  19. Crick FHC (1968) J Mol Biol 38:367–379

  20. Crick FHC, Brenner S, Klug A, Pieczenik G (1976) Origins of Life 7:389–397

  21. Cronin JR, Moore CB (1971) Science 172:1327–1329

  22. Danishefsky S, Hirama M, Fritsch N, Clardy J (1979) J Am Chem Soc 101:7013–7018

  23. Deslauriers R, Walter R, Smith CP (1973) FEBS Lett 37:27–32

  24. Eigen M, Schuster P (1978) Naturwissenschaften 65:341–369

  25. Fahnestock S, Rich A (1971) Science 173:340–343

  26. Fickel TE, Gilvarg C (1973) J Org Chem 38:1421–1423

  27. Friedmann N, Haverland WJ, Miller SL (1971) Prebiotic synthesis of aromatic and other amino acids. In: Buvet R, Ponnamperuma C (eds) Chemical evolution and the origin of life. North-Holland, Amsterdam, p 123

  28. Friedmann N, Miller SL (1969) Science 166:766–767

  29. Gatica M, Allende CC, Mora G, Allende JE, Medina J (1966) Biochim Biophys Acta 129:201–203

  30. Gilbert JB, Price VE, Greenstein JP (1949) J Biol Chem 180:209–218

  31. Glickson JD, Applequist J (1971) J Am Chem Soc 93:3276–3281

  32. Goodman M, Fried M (1967) J Am Chem Soc 89:1264–1267

  33. Gund P, Veber DF (1979) J Am Chem Soc 101:1885–1887

  34. Hamilton PB (1945) J Biol Chem 158:375–395

  35. Hay RW, Morris PJ (1970) J Chem Soc (B):1577–1582

  36. Hay RW, Morris PJ (1972) J Chem Soc Perkin II:1021–1029

  37. Hay RW, Porter LJ (1967) J Chem Soc (B):1261–1264

  38. Hay RW, Porter LJ, Morris PJ (1966) Aust J Chem 19:1197–1205

  39. Hettinger TP, Craig LC (1970) Biochemistry 9:1224–1232

  40. Horowitz NH (1945) Proc Natl Acad Sci USA 31:153–157

  41. Isumiya N, Fu SJ, Birnbaum SM, Greenstein JP (1953) J Biol Chem 205:221–230

  42. Jacobson SJ, Wilson CG, Rapoport H (1974) J Org Chem 39:1074–1077

  43. Jukes TH (1974) Origins of Life 5:331–350

  44. Jungck JR (1978) J Mol Evol 11:211–224

  45. Khare BN, Sagan C (1971) Nature 232:577–579

  46. Kittredge JS, Roberts E (1969) Science 164:37–42

  47. Krayevsky AA, Kukhanova MK (1979) The peptidyltransferase center of ribosomes. In: Cohn WE (ed) Progress in nucleic acid research and molecular biology. Vol. 23. Academic Press, New York, p 1

  48. Kushwaha DRS, Mathur KB, Balasubramanian D (1980) Biopolymers 19:219–229

  49. Kvenvolden K, Lawless J, Pering K, Peterson E, Flores J, Ponnamperuma C, Kaplan IR, Moore C (1970) Nature 228:923–926

  50. Kvenvolden KA Lawless JG, Ponnamperuma C (1971) Proc Natl Acad Sci USA 68:486–490

  51. Lagerkvist U (1978) Proc Natl Acad Sci USA 75:1759–1762

  52. Lawless JG, Levi N (1979) J Mol Evol 13:281–286

  53. Leplawy MT, Jones DS, Kenner GW, Sheppard RC (1960) Tetrahedron 11:39–51

  54. Lipson MA, Sondheimer E (1964) J Org Chem 29:2392–2394

  55. Macino G, Coruzzi G, Nobrega FG, Li M, Tzagoloff A (1979) Proc Natl Acad Sci USA 76:3784–3785

  56. Mark JE, Goodman M (1967) J Am Chem Soc 89:1267–1268

  57. Martin RB, Parcell A, Hedrick RI (1964) J Am Chem Soc 86:2406–2413

  58. Meister A, Bukenberger MW (1962) Nature 194:557–559

  59. Metzler DE, Longenecker JB, Snell EE (1954) J Am Chem Soc 76:639–644

  60. Miller SL (1957) Biochim Biophys Acta 23:480–489

  61. Miller Sl, Orgel LE (1974) The origins of life on the earth. Prentice-Hall, Englewood Cliffs, New Jersey, p 121

  62. Mooz ED (1976) Data on the naturally occuring amino acids. In: Fasman GD (ed) Handbook of biochemistry and molecular biology. proteins, Vol. 1. Chemical Rubber Co. Press, Cleveland, p 111

  63. Nagaraj R, Shamala N, Balaram P (1979) J Am Chem Soc 101:16–20

  64. Nathans D, Neidle A (1963) Nature 197:1076–1077

  65. Norden B (1978) J Mol Evol 11:313–332

  66. Old JM, Jones DS (1975) Biochem Soc Trans 3:659–660

  67. Peltzer ET (1979) Thesis, University of California, San Diego

  68. Peltzer ET, Bada JL (1978) Nature 272:443–444

  69. Poduska K, Katrukha GS, Silaev AB, Rudinger J (1965) Collect Czech Chem Commun 30:2410–2433

  70. Pospisek J, Blaha K (1976) Syntheses of peptides containing a tert-leucine residue. In: Loffet A (ed) Peptides 1976. Editions Universitaires, Brussels, p 95

  71. Reuben J, Polk FE (1980) J Mol Evol 15:103–112

  72. Rich A (1971) The possible participation of esters as well as amides in prebiotic polymers. In: Buvet R, Ponnamperuma C (eds) Chemical evolution and the origin of life. North-Holland, Amsterdam, p 180

  73. Ring D, Wolman Y, Friedmann N, Miller SL (1972) Proc Natl Acad Sci USA 69:765–768

  74. Robinson AB, Scotchler JW, McKerrow JH (1973) J Am Chem Soc 95:8156–8159

  75. Rychlik I, Cerna J, Chladek S, Pulkrabek P, Zemlicka J (1970) Eur J Biochem 16:136–142

  76. Sagan C, Khare BN (1971) Science 173:417–420

  77. Samuel D, Silver BL (1963) J Chem Soc 289–296

  78. Sato M, Okawa K, Akabori S (1957) Bull Chem Soc Japan 30:937–938

  79. Schlesinger G (1968) Dissertation, University of California, San Diego

  80. Schroeder RA, Bada JL (1977) Geochim Cosmochim Acta 41:1087–1095

  81. Thanassi JW (1970) Biochemistry 9:525–532

  82. Uy R, Wold F (1977) Science 198:890–896

  83. Van Trump JE, Miller SL (1972) Science 178:859–860

  84. Van Trump JE, White R, Miller SL (1981) in press

  85. Vallentyne JR (1964) Geochim Cosmochim Acta 28:157–188

  86. Weber AL, Lacey JC Jr (1978) J Mol Evol 11:199–210

  87. Wilson H, Cannan RK (1937) J Biol Chem 119:309–331

  88. Woese CR (1967) The genetic code: The molecular basis for genetic expression. Harper and Row, New York

  89. Wolman Y, Haverland WJ, Miller SL (1972) Proc Natl Acad Sci USA 69:809–811

  90. Wong JT (1976) Proc Natl Acad Sci USA 73:2336–2340

  91. Wong JT, Bronskill PM (1979) J Mol Evol 13:115–125

  92. Zeitman B, Chang S, Lawless JG (1974) Nature 251:42–43

Download references

Author information

Correspondence to Stanley L. Miller.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weber, A.L., Miller, S.L. Reasons for the occurrence of the twenty coded protein amino acids. J Mol Evol 17, 273–284 (1981). https://doi.org/10.1007/BF01795749

Download citation

Key words

  • Amino acids
  • Molecular evolution
  • Genetic Code
  • Protein synthesis
  • Prebiotic synthesis