Advertisement

Annali di Matematica Pura ed Applicata

, Volume 124, Issue 1, pp 161–179 | Cite as

Sull'esistenza di autovalori per un problema al contorno non lineare

  • Giovanna Cerami
Article

Summary

In this paper the existence of infinitely many eigenvalues for the non linear boundary value problem
$$\left\{ \begin{gathered} - \Delta u - \bar \lambda u = \mu \alpha (u) \hfill \\ u|_{\partial \Omega } = 0 \hfill \\ \end{gathered} \right.$$
ΩtRn bounded and\(\bar \lambda \in \)1, λ2)where λ1and λ2are the first and the second eigenvalue of — Δ respectively. The eigenvalues are characterized by the critical levels of a suitable functional on a smooth unbounded manifold. The usual method is not applicable because the functional is not positive definite and the Palais-Smale condition is not satisfied. We applies a technique introduced in a preceding paper [3].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. [1]
    A.Ambrosetti - G.Prodi,Analisi non lineare, Quaderno della Scuola Normale Superiore di Pisa (1973).Google Scholar
  2. [2]
    D. C. Clark,A variant of the Lusternik-Schnirelman theory, Indiana Univ. Math. Journal,22 (1972), pp. 65–74.Google Scholar
  3. [3]
    G.Cerami,Un criterio di esistenza per i punti critici su varietà illimitate, Rend. Ist. Lombardo, Classe di Scienze, Sez. A,113 (1979).Google Scholar
  4. [4]
    R. Courant -D. Hilbert,Méthods of Mathematical Physics, Interscience Publ., New York (1963).Google Scholar
  5. [5]
    L. A. Lusternik -L. Schnirelman,Methodes topologiques dans les problèmes variationnels, Gauthier-Villars, Paris (1934).Google Scholar
  6. [6]
    R. S. Palais,Homotopy theory of infinite dimensional manifolds, Topology,5 (1966), pp. 1–16.Google Scholar
  7. [7]
    R. S. Palais,Lusternik-Schnirelman theory on Banach manifolds, Topology,5 (1966), pp. 115–132.Google Scholar
  8. [8]
    G.Prodi,Corso di analisi non lineare, Scuola Normale Superiore di Pisa (1973).Google Scholar
  9. [9]
    J. T. Schwartz,Generalizing the Lusternik-Schnirelman theory of critical points, Com. Pure Appl. Math.,17 (1964), pp. 307–315.Google Scholar
  10. [10]
    A.Ambrosetti,Topics in critical point theory and applications to nonlinear problems, Math. Inst. der Ruhr-Universität Bochum, West Germany and Ist. Mat. Università di Ferrara, Italy.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1980

Authors and Affiliations

  • Giovanna Cerami
    • 1
  1. 1.Palermo

Personalised recommendations