Journal of Neurocytology

, Volume 16, Issue 2, pp 249–260 | Cite as

Lectin binding by resting and reactive microglia

  • Wolfgang J. Streit
  • Georg W. Kreutzberg
Article

Summary

Conjugates of the B4 isolectin fromGriffonia simplicifolia seeds and horseradish peroxidase were used as a histochemical reagent for the specific visualization of microglial cells in the rat CNS. Resident microglia bearing galactose-containing glycoconjugates were stained throughout the brainstem and cerebellum. In the first week following axotomy of the facial nerve, a profound and rapid accumulation of reactive microglia, as evidenced by increasing lectin reactivity, was seen to take place in the facial nucleus. Light microscopy of paraffin sections demonstrated binding of lectin-horeseradish peroxidase conjugates to microglial cytoplasmic processes. When ultrastructural cytochemistry was performed, reaction product was found localized on microglial plasma membranes, as well as on intracytoplasmic membranes. The glial reaction to axotomy was studied further with double labelling of microglia and astrocytes by lectin histochemistry and immunostaining for glial fibrillary acidic protein, respectively. Our results demonstrate the presence of membrane-associated glycoconjugates containing terminal α-D-galactose residues on microglia, but not on other glial cell types. The possible nature and function of these glycoconjugates are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J. C. (1981) Heavy metal intensification of DAB-based HRP reaction product.Journal of Histochemistry and Cytochemistry 29, 775.Google Scholar
  2. Aldskogius, H. (1982) Glial cell responses in the adult rabbit dorsal motor vagal nucleus during axon reaction.Neuropathology and Applied Neurobiology 8, 341–9.Google Scholar
  3. Avrameas, S. (1969) Coupling of enzymes to proteins with glutaraldehyde.Immunochemistry 6, 43–52.Google Scholar
  4. Bignami, A., Eng, L. F. &Uyeda, C. T. (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence.Brain Research 43, 429–35.Google Scholar
  5. Blinzinger, K. &Kreutzberg, G. W. (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells.Zeitschrift für Zellforschung und mikroskopische Anatomie 85, 145–57.Google Scholar
  6. Brückner, G., Müller, L., Wollweber, L., Samtleben, R. &Biesold, D. (1985) Lectin binding sites and anionic components related to differentiation in the prenatal rat cerebral cortex.Journal für Hirnforschung 26, 615–34.Google Scholar
  7. Cammermeyer, J. (1965) Juxtavascular karyokinesis and microglia cell proliferation during retrograde reaction in the mouse facial nucleus.Ergebnisse der Anatomie und Entwicklungsgeschichte 38, 1–22.Google Scholar
  8. Del Rio-Hortega, P. (1965) Microglia. InCytology and Cellular Pathology of the Nervous System, Vol. 2 (edited byPenfield, W.), pp. 483–534. New York: Hafner.Google Scholar
  9. Esiri, M. M. &McGee, J. (1986) Monoclonal antibody to macrophages (EMB/11) labels macrophages and microglial cells in human brain.Journal of Clinical Pathology 39, 615–21.Google Scholar
  10. Finne, J. &Krusius, T. (1976) O-glycosidic carbohydrate units from glycoproteins of different tissues: demonstration of a brain-specific disaccharide, α-galactosyl-(1–3)-N-acetylgalactosamine.FEBS Letters 66, 94–7.Google Scholar
  11. Ghandour, M. S., Langley, O. K., Vincendon, G. &Gombos, G. (1979) Double labeling immunohistochemical technique provides evidence of the specificity of glial cell markers.Journal of Histochemistry and Cytochemistry 27, 1634–7.Google Scholar
  12. Gioannini, T., Foucaud, B., Hiller, J. M., Hatten, M. E. &Simon, E. J. (1982) Lectin binding of solubilized opiate receptors: Evidence for their glycoprotein nature.Biochemical and Biophysical Research Communications 105, 1128–34.Google Scholar
  13. Giulian, D. &Baker, T. J. (1985) Peptides released by ameboid microglia regulate astroglial proliferation.Journal of Cell Biology 101, 2411–15.Google Scholar
  14. Graeber, M. B. &Kreutzberg, G. W. (1986) Astrocytes increase in glial fibrillary acidic protein during retrograde changes of facial motor neurons.Journal of Neurocytology 15, 363–73.Google Scholar
  15. Graham, R. C. &Karnovsky, M. J. (1966) The early stages of absorption of injected horseradish peroxidase into the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique.Journal of Histochemistry and Cytochemistry 14, 291–302.Google Scholar
  16. Hatten, M. E., Schachner, M. &Sidman, R. L. (1979) Histochemical characterization of lectin binding in mouse cerebellum.Neuroscience 4, 921–35.Google Scholar
  17. Hayes, C. E. &Goldstein, I. J. (1974) An α-D-galactosyl-binding lectin fromBandeiraea simplicifolia seeds.Journal of Biological Chemistry 249, 1904–14.Google Scholar
  18. Ibrahim, M. Z. M., Khreis, Y. &Koshayan, D. S. (1974) The histochemical identification of microglia.Journal of the Neurological Sciences 22, 211–33.Google Scholar
  19. Kreutzberg, G. W. (1966) Autoradiographische Untersuchung über die Beteiligung von Gliazellen an der axonalen Reaktion im Facialiskern der Ratte.Acta neuropathologica (Berlin) 7, 149–61.Google Scholar
  20. Kreutzberg, G. W. &Barron, K. D. (1978) 5′Nucleotidase of microglial cells in the facial nucleus during axonal reaction.Journal of Neurocytology 7, 601–10.Google Scholar
  21. Kreutzberg, G. W., Barron, K. D. &Schubert, P. (1978) Cytochemical localization of 5′nucleotidase in glial plasma membranes.Brain Research 158, 247–57.Google Scholar
  22. Langer, G. A., Frank, J. S., Nudd, L. M. &Seraydarian, K. (1976) Sialic acid: Effect of removal on calcium exchangeability of cultured heart cells.Science 193, 1013–15.Google Scholar
  23. Maddox, D. E., Shibata, S. &Goldstein, I. J. (1982) Stimulated macrophages express a new glycoprotein receptor reactive withGriffonia simplicifolia I-B4 isolectin.Proceedings of the National Academy of Sciences USA 79, 166–70.Google Scholar
  24. Mori, S. &Leblond, C. P. (1969) Identification of microglia in light and electron microscopy.Journal of Comparative Neurology 135, 57–80.Google Scholar
  25. Murabe, Y. &Sano, Y. (1981) Thiaminepyrophosphatase activity in the plasma membrane of microglia.Histochemistry 71, 45–52.Google Scholar
  26. Nakagawa, F., Schulte, B. A. &Spicer, S. S. (1986) Selective cytochemical demonstration of glycoconjugate containing terminalN-acetylgalactosamine on some brain neurons.Journal of Comparative Neurology 243, 280–90.Google Scholar
  27. Nissl, F. (1894) Über eine neue Untersuchungsmethode des Centralorgans speziell zur Feststellung der Lokalization der Nervenzellen.Zentralblatt für Nervenheilkunde und Psychiatrie 17, 337–44.Google Scholar
  28. Perry, V. H., Hume, D. A. &Gordon, S. (1985) Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain.Neuroscience 15, 313–26.Google Scholar
  29. Peters, B. P. &Goldstein, I. J. (1979) The use of fluorescein-conjugatedBandeiraea simplicifolia B4-isolectin as a histochemical reagent for the detection of α-D-galactpyranosyl groups.Experimental Cell Research 120, 321–34.Google Scholar
  30. Pohle, W., Popov, N., Schulzeck, S. &Matthies, H. (1982) Distribution of hippocampal glycoproteins as demonstrated in rats by lectin binding and autoradiography after intraventricular injections of labelled fucose,N-acetyl-glucosamine and mannose.Neuroscience 7, 2715–24.Google Scholar
  31. Rosenberg, A. (1979) Biosynthesis and metabolism of gangliosides. InComplex Carbohydrates of Nervous Tissue (edited byMargolis, R. U. &Margolis, R. K.) pp. 25–43. New York: Plenum Press.Google Scholar
  32. Sattler, J., Schwarzmann, G., Staerk, J., Ziegler, W. &Wiegandt, H. (1977) Studies of the ligand binding to cholera toxin. II. The hydrophilic moiety of sialoglycolipids.Zeitschrift für Physiologische Chemie 358, 159–63.Google Scholar
  33. Schelper, R. L., Whitters, E. &Hart, M. N. (1985) True microglia distinguished from macrophages by specific lectin binding.Journal of Neuropathology and Experimental Neurology 44, 332 (Abstract).Google Scholar
  34. Schiffer, D., Giordana, M. T., Migheli, A., Giaccone, G., Pezzotta, S. &Mauro, A. (1986) Glial fibrillary acidic protein and vimentin in the experimental glial reaction of the rat brain.Brain Research 374, 110–18.Google Scholar
  35. Shirakawa, O., Kuno, T. &Tanaka, C. (1983) The glycoprotein nature of solubilized muscarinic acetylcholine receptors from bovine cerebral cortex.Biochemical and Biophysical Research Communications 115, 814–19.Google Scholar
  36. Sjöstrand, J. (1965) Proliferative changes in glial cells during nerve regeneration.Zeitschrift für Zellforschung und mikroskopische Anatomie 68, 481–93.Google Scholar
  37. Sternberger, N. H., Quarles, R. H., Itoyama, Y. &Webster, H. DeF. (1979) Myelin-associated glycoprotein demonstrated immunocytochemically in myelin and myelin-forming cells of developing rat.Proceedings of the National Academy of Sciences USA 76, 1510–14.Google Scholar
  38. Streit, W. J., Schulte, B. A., Balentine, J. D. &Spicer, S. S. (1985b) Histochemical localization of galactose-containing glycoconjugates in sensory neurons and their processes in the central and peripheral nervous system of the rat.Journal of Histochemistiy and Cytochemistry 33, 1042–52.Google Scholar
  39. Streit, W. J., Schulte, B. A., Balentine, J. D. &Spicer, S. S. (1986) Evidence for glycoconjugate in nociceptive primary sensory neurons and its origin from the Golgi complex.Brain Research 377, 1–17.Google Scholar
  40. Streit, W. J., Schulte, B. A., Spicer, S. S. &Balentine, J. D. (1985a) Histochemical localization of galactose-containing glycoconjugate at peripheral nodes of Ranvier.Journal of Histochemistry and Cytochemistry 33, 33–9.Google Scholar
  41. Sumner, B. E. H. (1974) The nature of the dividing cells around axotomized hypoglossal neurones.Journal of Neuropathology and Experimental Neurology 33, 507–18.Google Scholar
  42. Torvik, A. &Soreide, A. J. (1975) The perineuronal glial reaction after axotomy.Brain Research 95, 519–29.Google Scholar
  43. Wood, J. G. &McLaughlin, B. J. (1975) The visualization of concanavalin A binding sites in the interperiod line of rat sciatic nerve myelin.Journal of Neurochemistry 24, 233–5.Google Scholar
  44. Yu, R. K. (1984) Gangliosides: Structure and analysis. InGanglioside Structure, Function, and Biomedical Potential (edited byLedeen, R. W., Yu, R. K., Rapport, M. M. &Suzuki, K.), pp. 39–53. New York: Plenum Press.Google Scholar

Copyright information

© Chapman and Hall Ltd 1987

Authors and Affiliations

  • Wolfgang J. Streit
    • 1
  • Georg W. Kreutzberg
    • 1
  1. 1.Department ofNeuromorphologyMax Planck Institute of PsychiatryMartinsried n. MunichFederal Republic of Germany

Personalised recommendations