Springer Seminars in Immunopathology

, Volume 17, Issue 4, pp 397–410

Genetically engineered superantigens in experimental tumor therapy

  • Per Antonsson
  • Johan Hansson
  • Terje Kalland
  • Peter A. Lando
  • Lennart Ohlsson
  • Elinor Schad
  • Anders Svensson
  • Mikael Dohlsten
Article

Conclusions

The data discussed in this review demonstrates that genetically engineered superantigens are highly effective anti-tumor agents in an experimental murine tumor model. The tumor-suppressive activity of Fab-SEA fusion proteins has been shown against established B16 lung metastases and recently also demonstrated against disseminated human colon carcinomas in SCID mice engrafted with human lymphocytes [9, 24]. The local response involves a pronounced infiltration and activation of CD4+ and CD8+ T lymphocytes. Fab-SEA proteins direct CTL against antigen-positive tumor cells and induce local release of tumor-suppressive cytokines. In situ expression of cytokines in the tumor may be particularly important in elimination of antigen-negative tumor cells inevitably present in any tumor. We have also shown that it is feasible to reduce the systemic toxicity and simultaneously retain the therapeutic efficacy of Fab-SEA fusion proteins by means of site-directed mutageneses of amino acids critical for MHC class II binding. The C215Fab-SEAD227A mutant had an estimated Kd of 10-9 M for the tumor antigen compared to Kd of less than 10-5 for the interaction with MHC class II molecules, giving the fusion protein a 10000-fold preference for the tumor antigen versus MHC class II molecules compared to a 100-fold difference for the wild-type C215Fab-SEA for the tumor antigen. It is likely, however, that the optimal MHC class II binding of SEA may vary in different clinical indications. If the targeted tumors such as lymphomas and leukemias, express MHC class II, it may be favorable to retain the affinity for MHC class II at a moderate level, since SEA induced cross-linking of MHC class II on the tumor cell might increase expression of co-stimulatory signals (Fig. 7). Similarly, during therapy of certain solid tumors, release of inflammatory cytokines by tumor-infiltrating MHC class II+ monocytes, may be influenced by MHC class II cross-linking, and thereby facilitate tumor uptake of the Fab-SEA protein.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrahmsén L, Dohlsten M, Segrén S, Björk P, Jonsson E, Kalland T (1995) Characterization of two distinct MHC class II binding sites in the superantigen staphylococcal enterotoxin A. EMBO J 14:2978Google Scholar
  2. 2.
    Acharya KR, Passalacqua EF, Jones EY, Harlos K, Stuart DI, Brehm RD, Tranter HS (1994) Structural basis of superantigen action inferred from crystal structure of toxic shock syndrome toxin-1. Nature 367:94Google Scholar
  3. 3.
    Betley MJ, Borst DW, Regassa LB (1992) Staphylococcal enterotoxins, toxic shock syndrome toxin and streptococcal pyrogenic exotoxins: a comparative study of their molecular biology. Chem Immunol 55:1Google Scholar
  4. 4.
    Dohlsten M, Hedlund G, Kalland T (1991) Staphylococcal enterotoxin-dependent cell-mediated cytotoxicity. Immunol Today 12:147Google Scholar
  5. 5.
    Dohlsten M, Hedlund G, Åkerblom E, Lando PA, Kalland T (1991) Monoclonal antibody-targeted superantigens: a different class of anti-tumor agents. Proc Natl Acad Sci USA 88:9287Google Scholar
  6. 6.
    Dohlsten M, Björklund M, Sundstedt A, Hedlund G, Samson D, Kalland T (1993) Immunopharmacology of the superantigen staphylococcal enterotoxin A in T-cell receptor Vβ3 transgenic mice. Immunology 79:520Google Scholar
  7. 7.
    Dohlsten M, Sundstedt A, Björklund M, Hedlund G, Kalland T (1993) Superantigen-induced cytokines suppress growth of human colon-carcinoma cells. Int J Cancer 54:482Google Scholar
  8. 8.
    Dohlsten M, Abrahmsén L, Björk P, Lando PA, Hedlund G, Forsberg G, Brodin T, Gascoigne NRJ, Förberg C, Lind P, Kalland T (1994) Monoclonal antibody-superantigen fusion proteins: tumor specific agents for T cell-based tumor therapy. Proc Natl Acad Sci USA 91:8945Google Scholar
  9. 9.
    Dohlsten M, Lando PA, Björk P, Abrahmsén L, Ohlsson L, Lind P, Kalland T (1995) Immunotherapy of human colon cancer by antibody targeted superantigens. Cancer Immunol Immunother 41:162Google Scholar
  10. 10.
    Dohlsten M, Hansson J, Ohlsson L, Litton M, Kalland T (1995) Antibody targeted superantigens are potent inducers of tumor infiltrating effector T lymphocytes in vivo Proc Natl Acad Sci USA 92:9791Google Scholar
  11. 11.
    Fischer H, Dohlsten M, Andersson U, Hedlund G, Ericsson P-O, Hansson J, Sjögren H-O (1990) Production of TNF-α and TNF-β by staphylococcal enterotoxin A activated human t cells. J Immunol 144:4663Google Scholar
  12. 12.
    Fraser JD, Urban RG, Strominger JL, Robinson H (1992) Zinc regulates the function of two superantigens. Proc Natl Acad Sci USA 89:5507Google Scholar
  13. 13.
    Fraser JD, Lowe S, Irwin MJ, Gascoigne NRJ, Hudson KR (1993) Structural model of Staphylococcal enterotoxin A interactions with MHC class II antigens. In: Huber BT, Palmer E (eds) Current communications in cell and molecular biology, vol 7. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  14. 14.
    Gidlöf C, Dohlsten M, Kalland T, Tötterman TH 1995 Antibodies are capable of directing superantigen-mediated T cell killing of chronic B-lymphocytic leukemia cells. Leukemia (in press)Google Scholar
  15. 15.
    Gjörloff A, Fischer H, Hedlund G, Hansson J, Kenney JS, Allsion AC, Sjögren HO, Dohlsten M (1991) Induction of interleukin-1 in human monocytes by the superantigen staphylococcal enterotoxin A requires the participation of T cells. Cell Immunol 137:61Google Scholar
  16. 16.
    Hedlund G, Dohlsten M, Lando P, Kalland T (1990) Staphylococcal enterotoxins direct and trigger CTL killing of autologous HLA-DR+ mononuclear leucocytes and freshly prepared leukemia cells. Cell Immunol 129:426Google Scholar
  17. 17.
    Herman A, Labrecque N, Thibodeau J, Marrack P, Kappler JW, Sekaly RP (1991) Identification of the staphylococcal enterotoxin A superantigen binding site in the beta 1 domain of the human histocompatibility antigen HLA-DR. Proc Natl Acad Sci USA 88:9954Google Scholar
  18. 18.
    Hudson KR, Tiedmann RE, Urban RG, Lowe SC, Strominger JL, Fraser JD (1995) Staphylococcal enterotoxin A has two cooperative binding sites on major histocompatibility complex class II. J Exp Med 182:711Google Scholar
  19. 19.
    Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG, Chi YI, Stauffacher C, Strominger JL, Wiley DC (1994) Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 368:711Google Scholar
  20. 20.
    Kalland T, Hedlund G, Dohlsten M, Lando PA (1991) Staphylococcal enterotoxin-dependent cellmediated cytotoxicity. Curr Top Microbiol Immunol 174:81Google Scholar
  21. 21.
    Karp DR, Long EO (1992) Identification of HLA-DR1β-chain residues critical for binding staphylococcal enterotoxin A and E. J Exp Med 175:415Google Scholar
  22. 22.
    Kotzin BL, Leung DY, Kappler J, Marrack P (1993) Superantigens and their potential role in human disease. Adv Immunol 54:99Google Scholar
  23. 23.
    Kraulis PJ (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystalogr 24:946Google Scholar
  24. 24.
    Lando PA, Dohlsten M, Ohlsson L, Kalland T (1995) Tumor-reactive superantigens suppress tumor growth in humanized SCID Mice. Int J Cancer 62:466Google Scholar
  25. 25.
    MacDonald HR, Lees RK, Baschieri S, Herrmann T, Lussow AR (1993) Peripheral T cell reactivity to bacterial superantigens in vivo: the response/anergy paradox. Immunol Rev 133:105Google Scholar
  26. 26.
    Mehindate K, Thibodeau J, Dohlsten M, Kalland T, Sekaly R-P, Mourad (1995) Crosslinking of two major histocompatibility complex class II molecules by a single SEA molecule is required for proinflammatory cytokine gene expression. J Exp Med 182:1573Google Scholar
  27. 27.
    Mollick JA, Chintagumpala M, Cook RG, Rich RR (1991) Staphylococcal exotoxin activation of T-cells. Role of exotoxin-MHC class II binding affinity and class II isotype. J Immunol 146:463Google Scholar
  28. 28.
    Papageorgiou AC, Acharya KR, Shapiro R, Passalacqua EF, Brehm RD, Tranter HS (1995) Crystal structure of the superantigen enterotoxin C2 fromStaphylococcus aureus reveals a zinc-binding site. Structure 3:769Google Scholar
  29. 29.
    Prasad GS, Earhart CA, Murray DL, Novick RP, Schlievert PM, Ohlendorf DH (1993) Structure of toxic shock syndrome toxin 1. Biochemistry 32:13761Google Scholar
  30. 30.
    Ren K, Bannan JD, Pancholi V, Cheung AL, Robbins JC, Fishetti VA, Zabriskie JB (1994) Characterization and biological properties of a new staphylococcal enterotoxin. J Exp Med 180:1675Google Scholar
  31. 31.
    Schad EM, Zaitseva I, Zaitsev VN, Dohlsten M, Kalland T, Schlievert PM, Ohlendorf DH, Svensson LA (1995) Crystal structure of the superantigen, staphylococcal enterotoxin type A. EMBO J 14:3292Google Scholar
  32. 32.
    Sundstedt A, Dohlsten M, Hedlund G, Höidén I, Björklund M, Kalland T (1994) Superantigens anergize cytokine production but not cytotoxicity in vivo. Immunology 82:117Google Scholar
  33. 33.
    Swaminathan S, Furey W, Pletcher J, Sax M (1992) Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature 359:801Google Scholar
  34. 34.
    Wallgren A, Festin R, Gidlöf C, Dohlsten M, Kalland T, Tötterman TH (1993) Efficient killing of chronic b-lymphocytic leukemia cells by superantigen-directed t cells. Blood 82:1230Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Per Antonsson
    • 1
  • Johan Hansson
    • 1
  • Terje Kalland
    • 1
    • 2
  • Peter A. Lando
    • 1
  • Lennart Ohlsson
    • 1
  • Elinor Schad
    • 3
  • Anders Svensson
    • 3
  • Mikael Dohlsten
    • 1
    • 2
  1. 1.Pharmacia Oncology ImmunologyLundSweden
  2. 2.The Wallenberg Laboratory, Department of Tumor ImmunologyUniversity of LundLundSweden
  3. 3.Molecular BiophysicsChemical Center, University of LundLundSweden

Personalised recommendations