Acta Neurochirurgica

, Volume 95, Issue 1–2, pp 40–48 | Cite as

Intraoperative use of Laser Doppler in the study of cerebral microvascular circulation

  • V. A. Fasano
  • R. Urciuoli
  • P. Bolognese
  • M. Mostert


Laser Doppler (LD) flowmetry has been used for evaluation of microcirculatory flow in a variety of human tissues, including skin, muscle, retina and recently the brain.

In the present paper, intraoperative Laser Doppler recordings have been performed in 72 cases, in basal conditions and after stimulation.

The morphology of basal recordings obtained from normal cortical areas were analyzed and three different rhythmical variations were identified; these rhythmical variations are described and explained.

Several kinds of stimulation have been used: hypotensive drugs, mannitol, nimodipine, eupaverine, hypercapnia, decompressive manoeuvres and temporary occlusion of the ICA in the neck. Laser Doppler recordings obtained during and after these stimulations are reported and explained.

The results have been evaluated in order to verify the reliability and the reproducibility of this technique in the study of the cerebral microvascular circulation intraoperatively.


Laser Doppler cerebral microcirculation autoregulation 

Abbreviations for figures legends


Flow Value


Time Constant


Paper Speed


Concentration of Moving Blood Cells


Arterial Pressure


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auer LM (1981) Pial arterial vasodilatation by intravenous nimodipine in cats. Drug Res 31: 1423–1425Google Scholar
  2. 2.
    Auer LM, Ito Z, Suzuki A, Ohta H (1982) Prevention of symptomatic vasospasm by topically applied nimodipine. In: Auer LMet al (eds) Proc 1st Symp Aneurysm Surgery in the Acute Stage. Acta Neurochir (Wien) 63: 297–302Google Scholar
  3. 3.
    Auer LM, Oberbauer RW, Schalk HV (1983) Human pial vascular reactions to intravenous nimodipine-infusion during EC-IC bypass surgery. Stroke 14: 210–213Google Scholar
  4. 4.
    Auer LM (1984) Acute operation and preventive nimodipine improve outcome in patients with ruptured cerebral aneurysm. Neurosurgery 15: 57–66Google Scholar
  5. 5.
    Auer LM, Suzuki A, Yasui N, Ito Z (1984) Intraoperative topical nimodipine after aneurysm clipping. Neurochirurgia 27: 36–38Google Scholar
  6. 6.
    Auer LM, Brandt L, Gilsbach J, Groeger U, Harders A, Ljunggren B, Oppel F, Reulen HJ, Saeveland H (1986) Nimodipine and early aneurysm operation in good condition SAH patients. Acta Neurochir (Wien) 82: 7–13Google Scholar
  7. 7.
    Bengsston M, Nilsson GE, Lofstrom JB (1982) The effect of spinal analgesia on skin blood flow, evaluated by laser doppler flowmetry. Acta Anesthesiol Scand 27: 278–284Google Scholar
  8. 8.
    Boccalon H, Venerandi MC, Lozes A, Puel P (1984) Introduction à la vélocimétrie au laser. Etude de la vascularisation cutanée. J Mal Vasc 9: 11–16Google Scholar
  9. 9.
    Boccalon H, Giestet Venerandi MC, Puel P (1985) Phénomène de Raynaud, doppler au laser, caisson isotherme, exploration de sujets normaux et pathologiques. J Mal Vasc 10: 11–16Google Scholar
  10. 10.
    Bonner RF, Clem TR, Bowen PD, Bowman RL (1981) Laser doppler continuous real-time monitor of pulsatile and mean blood flow in tissue microcirculation. In: Chen SH, Chu B, Nossal R (eds) Scattering techniques applied to supramolecular and nonequilibrium system. Plenum Press, New York London, pp 685–701Google Scholar
  11. 11.
    Bonner R, Nossal R (1981) Model for laser doppler measurements of blood flow in tissue. Appl Optics 20: 2097–2107Google Scholar
  12. 12.
    Born GVR, Melling A, Whitelaw JH (1978) Laser doppler microscope for blood velocity measurements. Biorheology 15: 163–172Google Scholar
  13. 13.
    Cannon PJ, Csiacca RR, Brust JCMet al (1974) Measurement of regional cerebral blood flow with xenon-133 and a multiple-crystal scintillation camera. Stroke 5: 371–383Google Scholar
  14. 14.
    Challoner AVJ (1975) Accurate measurement of skin blood flow by a thermal conductance method. Med Biol Eng 13: 196–201Google Scholar
  15. 15.
    Cochrane T, Earnshaw JC (1978) Practical laser doppler microscopes. J Phys E Sci Instrum 11: 196–198Google Scholar
  16. 16.
    Damber JE, Lindhal O, Selstam G, Tenland T (1982) Testicular blood flow measured with a laser doppler flowmeter: acute effects of catecholamines. Acta Physiol Scand 115: 209–215Google Scholar
  17. 17.
    Fasano VA, Levi E, Urciuoli R, Liboni W, Pignocchino P, Bolognese P, Egidi M, Fontanella MM, Bulla A, Lombard GF, Clemens R, Davico M (1987) Progress in the approach to vasospasm. In: Proc Int Symp on Surgery for Cerebral stroke Senday May 1987Google Scholar
  18. 18.
    Feuerstein G, Jacobs T (1987) Laser doppler velocimetry for spinal cord blood flow measurement. In: Proc 3rd Int Symp New Frontiers of Biochemistry and Treatment of Stroke and Brain Spinal Cord Injury. Florence, May 1987Google Scholar
  19. 19.
    Fisher JC, Parker PM, Shaw WW (1983) Comparison of two laser doppler flowmeters for the monitoring of dermal blood flow. Microsurgery 4: 164–170Google Scholar
  20. 20.
    Gygax P, Wiernsperger N (1983) Hypotension induced changes in cerebral microflow and EEG and their pharmacological alterations. Acta Med Scand [Suppl] 678: 29–35Google Scholar
  21. 21.
    Hassler W (1986) Haemodynamic aspects of cerebral angiomas. Acta Neurochir (Wien) [Suppl] 37: 10–32Google Scholar
  22. 22.
    Hellem S, Jacobsson L, Nilsson GE, Lewis DH (1982) Measurement of microvascular blood flow in cancellous bone using laser doppler flowmetry and 133-xenon-clearance. Int J Microcirc Clin Exp 1: 184–192Google Scholar
  23. 23.
    Holloway GA, Watkins DW (1977) Laser doppler measurement of cutaneous blood flow. J Invest Dermatol 69: 306–309Google Scholar
  24. 24.
    Kristensen JK, Engelhardt M, Nielsen T (1983) Laser doppler measurement of digital blood flow regulation in normals and in patients with Raynaud's phenomenon. Acta Dermatol 63: 43–47Google Scholar
  25. 25.
    Le Cong P, Zweifach BW (1979)In vivo andin vitro velocimetry measurements in microvasculature with a laser. Microvascul Res 17: 131–141Google Scholar
  26. 26.
    Meyer FB, Anderson RE, Sundt TM, Yaksh TL (1987) Treatment of experimental focal cerebral ischemia with mannitol. J Neurosurg 66: 109–115Google Scholar
  27. 27.
    Micheels J, Alsbjord B, Sorensen B (1984) Laser doppler flowmetry, a new noninvasive measurement of microcirculation in intesive care? Resuscitation 12: 31–39Google Scholar
  28. 28.
    Miller JM, Goodwing PC, Marks NJ (1984) Inner ear blood flow measurement with a laser doppler system. Arch Otolaryngol 110: 305–308Google Scholar
  29. 29.
    Muizelaar JP, Lutz HA, Becker DP (1984) Effect of mannitol with pressure autoregulation is severely head-injured patients. J Neurosurg 61: 700–706Google Scholar
  30. 30.
    Nilsson GE, Tenland T, Oberg PA (1980) A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy. IEEE Trans Biomed Eng 27: 12–19Google Scholar
  31. 31.
    Nilsson GE, Tenland T, Oberg PA (1980) Evaluation of a laser doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng 27: 597–604Google Scholar
  32. 32.
    Oberg PA, Nilsson GE, Tenland T, Holmstrom A, Lewis DH (1987) Use of a new laser doppler flowmeter for measurement of capillary blood flow in skelet al muscle after bullet wounding. Acta Chir Scand [Suppl] 489: 145–150Google Scholar
  33. 33.
    Oberg PA, Tenland T, Nilsson GE (1984) Laser doppler flowmetry a non invasive and cutaneous methods for blood flow evaluation in microvascular studies. Acta Med Scand 687: 17–24Google Scholar
  34. 34.
    Pickard JD, Boisvert DPJ, Graham DI, Fitch W (1979) Late effects of SAH on the response of the primate circulation to drug-induced changes in arterial blood pressure. J Neurol Neurosurg Psychiatry 42: 899–903Google Scholar
  35. 35.
    Pickard JD, Matheson M, Patterson J, Wyper D (1980) Prediction of late ischemic complications after cerebral aneurysm surgery by the intraoperative measurement of cerebral blood flow. J Neurosurg 53: 305–308Google Scholar
  36. 36.
    Powers ED, Frayer WW (1978) Laser doppler measurement of blood flow in the microcirculation. Plast Reconstruct Surg 61: 250–255Google Scholar
  37. 37.
    Riva C, Ross B, Benedek GB (1972) Laser doppler measurement of blood flow in capillary tubes and retinal arteries. Invest Ophthalmol Vis Sci 11: 936–944Google Scholar
  38. 38.
    Rosenblum BR, Bonner RF, Oldfield EH (1987) Intraoperative measurement of cortical blood flow adjacent to cerebral AVM using laser doppler velocimetry. J Neurosurg 66: 396–399Google Scholar
  39. 39.
    Salerud G, Nilsson GE, Oberg PA (1981) Rhythmic vasomotion in the skin studied by laser doppler flowmetry. Biol Eng 1: 216–218Google Scholar
  40. 40.
    Stern MD (1975)In vivo evaluation of microcirculation by coherent light scattering. Nature 254: 56–58Google Scholar
  41. 41.
    Stern MD, Lappe DL, Bowman RL (1977) Continuous measurement of tissue blood flow by laser doppler spectroscopy. Am J Physiol 232: 441–448Google Scholar
  42. 42.
    Tanaka T, Riva C, Ben Sira J (1974) Blood velocity measurements in human retinal vessels. Science 186: 830–831Google Scholar
  43. 43.
    Watkins DW, Holloway GA (1978) An instrument to measure cutaneous blood flow using doppler shift of laser light. IEEE Trans Biomed Eng 25: 28–33Google Scholar
  44. 44.
    Zeghal K, Gerlin P, Maurel A, La Grue G, Lhoste F (1986) Le vélocimétrie laser doppler: nouvelle technique d'évaluation de la microcirculation. Etude de la reproducibilité. Presse Med 40: 1997Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • V. A. Fasano
    • 1
  • R. Urciuoli
    • 1
  • P. Bolognese
    • 1
  • M. Mostert
    • 2
  1. 1.Institute of NeurosurgeryTurinItaly
  2. 2.Paediatric Clinic of the University of TurinTurinItaly

Personalised recommendations