Graphs and Combinatorics

, Volume 5, Issue 1, pp 389–391 | Cite as

The number of faces of centrally-symmetric polytopes

  • Gil Kalai
Research Problems


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barany, I., Lovasz, L.: Borsuk's theorem and the number of facets of centrally symmetric polytopes. Acta Math. Acad. Sci. Hung.40, 323–329 (1982)Google Scholar
  2. 2.
    Figiel, T., Lindenstrauss J., Milman, V.D.: The dimension of almost spherical sections of convex sets. Acta Math.139, 53–94 (1977)Google Scholar
  3. 3.
    Hanner, O.: Intersection of translates of convex bodies. Mat. Scand.4, 65–87 (1956)Google Scholar
  4. 4.
    Hansen, A.B., Lima, A.: The structure of finite dimensional Banach spaces with the 3.2 intersection property. Acta Math.146, 1–23 (1981)Google Scholar
  5. 5.
    Meyer, M.: Une caractérisation volumique de certains espaces normés de dimension finis. Isr. J. Math.55, 317–327 (1986)Google Scholar
  6. 6.
    Reisner, S.: Minimal volume-product in Banach spaces with a l-unconditional bases. J. London Math. Soc. (2)36, 126–136 (1987)Google Scholar
  7. 7.
    Stanley, R.: The number of faces of simplicial centrally-symmetric polytopes. Graphs and Combinatorics3, 55–66 (1986)Google Scholar
  8. 8.
    Bourgain, J., Milman, V.D.: New Volume ratio properties for convex symmetric bodies in ℝn, Invent. Math.88, 319–340 (1987)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Gil Kalai
    • 1
  1. 1.The Edmund Landau Center in Mathematical Analysis Institute of MathematicsHebrew UniversityJerusalemIsrael

Personalised recommendations