Graphs and Combinatorics

, Volume 5, Issue 1, pp 315–325 | Cite as

Gray codes for reflection groups

  • J. H. Conway
  • N. J. A. Sloane
  • Allan R. Wilks


LetG be a finite group generated by reflections. It is shown that the elements ofG can be arranged in a cycle (a “Gray code”) such that each element is obtained from the previous one by applying one of the generators. The case G =A 1 n yields a conventional binary Gray code. These generalized Gray codes provide an efficient way to run through the elements of any finite reflection group.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, H.L.: Hamiltonian circuits and paths on then-cube. Canad. Math. Bull.9, 557–562 (1966)Google Scholar
  2. 2.
    Afriat, S.N.: The Ring of Linked Rings. London: Duckworth 1982Google Scholar
  3. 3.
    Agrawal, D.P.: Signed modified reflected binary code. IEEE Trans. Comput.25, 549–552 (1976)Google Scholar
  4. 4.
    Arazi, B.: An approach to generating different types of Gray codes. Inf. Control63, 1–10 (1984)Google Scholar
  5. 5.
    Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways. NY: Academic Press 1982Google Scholar
  6. 6.
    Bitner, J.R., Ehrlich, G., Reingold, E.M.: Efficient generation of the binary reflected Gray code and its applications. Commun. ACM19, 517–521 (1976)Google Scholar
  7. 7.
    Bourbaki, N.: Groupes et Algèbres de Lie. Chapitres 4, 5 et 6. Paris: Hermann 1968Google Scholar
  8. 8.
    Buck, M., Wiedemann, D.: Gray codes with restricted density. Discrete Math.48, 163–171 (1984)Google Scholar
  9. 9.
    Caviour, S.R.: An upper bound associated with errors in Gray code. IEEE Trans. Inf. Theory21, 596 (1975)Google Scholar
  10. 10.
    Chamberlain, R.M.: Gray codes, Fast Fourier Transforms and hypercubes. Parallel Computing6, 225–233 (1988)Google Scholar
  11. 11.
    Cohn, M.: Affinem-ary Gray codes. Inf. Control6, 70–78 (1963)Google Scholar
  12. 12.
    Cohn, M., Even, S.: A Gray code counter. IEEE Trans. Comput.18, 662–664 (1969)Google Scholar
  13. 13.
    Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. NY: Springer-Verlag 1988Google Scholar
  14. 14.
    Coxeter, H.S.M.: Regular Polytopes. 3rd ed. NY: Dover 1973Google Scholar
  15. 15.
    Coxeter, H.S.M., Moser, W.O.J.: Generators and Relations for Discrete Groups. 4th ed. NY: Springer-Verlag 1980Google Scholar
  16. 16.
    Crowe, D.W.: Then-dimensional cube and the tower of Hanoi. Amer. Math. Mon.63, 29–30 (1956)Google Scholar
  17. 17.
    Darwood, N.: Using the decimal Gray code. Electronic Engineering. 28–29 (Feb. 1972)Google Scholar
  18. 18.
    Dershowitz, N.: A simplified loop-free algorithm for generating permutations. BIT15, 158–164 (1975)Google Scholar
  19. 19.
    Dixon, E., Goodman, S.: On the number of Hamiltonian circuits in then-cube. Proc. Amer. Math. Soc.50, 500–504 (1975)Google Scholar
  20. 20.
    Dobkin, D.P., Levy, V.F., Thurston, W.P., Wilks, A.R.: Contour tracing by piecewise linear approximations. Transactions on Graphics9 (1990), to appearGoogle Scholar
  21. 21.
    Douglas, R.J.: Bounds on the number of Hamiltonian circuits in then-cube. Discrete Math.17, 143–146 (1977)Google Scholar
  22. 22.
    Ehrlich, G.: Loopless algorithms for generating permutations, combinations, and other combinatorial configurations. J. ACM20, 500–513 (1973)Google Scholar
  23. 23.
    Er, M.C.: On generating then-ary reflected Gray codes. IEEE Trans. Comput.33, 739–741 (1984)Google Scholar
  24. 24.
    Er, M.C.: Two recursive algorithms for generating the binary reflected Gray code. J. Inf. Optimization Sci.6, 213–216 (1985)Google Scholar
  25. 25.
    Flores, I.: Reflected number systems. IRE Trans. Electronic Computers5, 79–82 (1956)Google Scholar
  26. 26.
    Gardner, M.: The curious properties of the Gray code and how it can be used to solve puzzles. Scientific American227, 106–109 (No. 2, August 1972)Google Scholar
  27. 27.
    Gilbert, E.N.: Gray codes and paths on then-cube. Bell Syst. Tech. J.37, 815–826 (1958)Google Scholar
  28. 28.
    Gray, F.: Pulse Code Communication. U.S. Patent 2632058, March 17, 1953Google Scholar
  29. 29.
    Gros, L.: Theorie de Baguenodier. Lyons: Aimé Vingtrinier 1872Google Scholar
  30. 30.
    Grossman, I., Magnus, W.: Groups and Their Graphs. NY: Random House 1964Google Scholar
  31. 31.
    Grove, L.C., Benson, C.T.: Finite Reflection Groups. 2nd ed. NY: Springer-Verlag 1985Google Scholar
  32. 32.
    Johnson, S.M.: Generation of permutations by adjacent transpositions. Math. Comput.17, 282–285 (1963)Google Scholar
  33. 33.
    Joichi, J.T., White, D.E.: Gray codes in graphs of subsets. Discrete Math.31, 29–41 (1980)Google Scholar
  34. 34.
    Joichi, J.T., White, D.E., Williamson, S.G.: Combinatorial Gray codes. SIAM J. Comput.9, 130–141 (1980)Google Scholar
  35. 35.
    Kaye, R.: A Gray code for set partitions. Info. Process Lett.5, 171–173 (1976)Google Scholar
  36. 36.
    Klee, V.: Long paths and circuits on polytopes. Chap. 17 of B. Grünbaum, Convex Polytopes. NY: Wiley 1967Google Scholar
  37. 37.
    Klingsberg, P.: A Gray code for compositions. J. Algorithms3, 41–44 (1982)Google Scholar
  38. 38.
    van Lantschoot, E.J.M.: A systematic method for designing Gray code counters. Comput. J. 43 (1973)Google Scholar
  39. 39.
    Levy, S.V.F., Wilks, A.R.: Computing the contour of a piecewise linear function (to appear)Google Scholar
  40. 40.
    Lucal, H.M.: Arithmetic operations for digital computers using a modified reflected binary code. IRE Trans. Electronic Computers8, 449–459 (1959)Google Scholar
  41. 41.
    Ludman, J.E., Sampson, J.L.: A technique for generating Gray codes. J. Stat. Plann. Inference5, 171–180 (1981)Google Scholar
  42. 42.
    Lüneburg, H.: Gray-codes. Abh. Math. Semin. Univ. Hamb.52, 208–227 (1982)Google Scholar
  43. 43.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. Amsterdam: North-Holland 1977Google Scholar
  44. 44.
    Mathialagan, A., Vaidehi, V.: Reduced look-up table for Gray to Binary conversion. J. Inst. Electron. Telecommun. Eng.32, 76–77 (1986)Google Scholar
  45. 45.
    Mills, W.H.: Some complete cycles on then-cube. Proc. Amer. Math. Soc.14, 640–643 (1963)Google Scholar
  46. 46.
    Oberman, R.M.M.: A new explanation of the reflected binary code. IEEE Trans. Comput.23, 641–642 (1974)Google Scholar
  47. 47.
    Prodinger, H.: Nonrepetitive sequences and Gray code. Discrete Math.43, 113–116 (1983)Google Scholar
  48. 48.
    Proskurowski, A., Ruskey, F.: Binary tree Gray codes. J. Algorithms6, 225–238 (1985)Google Scholar
  49. 49.
    Rankin, R.A.: A campanological problem in group theory. Proc. Comb. Phil. Soc.44, 17–25 (1948)Google Scholar
  50. 50.
    Sharma, B.D., Khanna, R.K.: Onm-ary Gray codes. Inf. Sci.15, 31–43 (1978)Google Scholar
  51. 51.
    Smith, D.H.: Hamiltonian circuits on then-cube. Canad. Math. Bull.17, 759–761 (1975)Google Scholar
  52. 52.
    Tang, D.T., Liu, C.N.: Distance 2 cyclic chaining of constant weight codes. IEEE Trans. Comput.22, 176–180 (1973)Google Scholar
  53. 53.
    Trotter, H.F.: Algorithm 115, PERM. Commun. ACM5, 434–435 (1962)Google Scholar
  54. 54.
    Vickers, V.E., Silverman, J.: A technique for generating specialized Gray codes. IEEE Trans. Comput.29, 329–331 (1980)Google Scholar
  55. 55.
    Wang, M.C.: An algorithm for Gray-to-binary conversion. IEEE Trans. Comput.15, 659–660 (1966)Google Scholar
  56. 56.
    White, A.T.: Graphs, Groups and Surfaces. Amsterdam: North-Holland 1973Google Scholar
  57. 57.
    White, A.T.: Graphs of groups on surfaces. In: Combinatorial Surveys (P.J. Cameron, ed.) pp. 165–197. NY: Academic Press 1977Google Scholar
  58. 58.
    White, A.T.: Ringing the changes. Math. Proc. Comb. Philos. Soc.94, 203–215 (1983)Google Scholar
  59. 59.
    White, A.T.: Ringing the changes II. Ars Comb.A20, 65–75 (1985)Google Scholar
  60. 60.
    White, A.T.: Ringing the cosets. Amer. Math. Mon.94, 721–746 (1987)Google Scholar
  61. 61.
    Yuen, C.K.: The separability of Gray code. IEEE Trans. Inf. Theory20, 668 (1974)Google Scholar
  62. 62.
    Yuen, C.K.: Fast analog-to-Gray code converter. Proc. IEEE65, 1510–1511 (1977)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • J. H. Conway
    • 1
  • N. J. A. Sloane
    • 2
  • Allan R. Wilks
    • 2
  1. 1.Mathematics DepartmentPrinceton UniversityPrincetonUSA
  2. 2.Mathematical Sciences Research CenterAT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations