Graphs and Combinatorics

, Volume 5, Issue 1, pp 213–221 | Cite as

Near 2-factorizations of 2K n : Cycles of even length

  • James Burling
  • Katherine Heinrich
Article

Abstract

We show that the edges of the complete multigraph 2Kmk+ 1 can be partitioned intomk + 1 factors, each the union ofmk-cycles, for all evenk, k ≥ 4.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alspach, B., Häggkvist, R.: Some observations on the Oberwolfach problem. J. Graph Theory9, 177–187 (1985)Google Scholar
  2. 2.
    Alspach, B., Schellenberg, P., Stinson, D., Wagner, D.: The Oberwolfach problem and factors of uniform odd length cycles. Research Report No. 86-04, Dept. of Math. and Stats. Simon Fraser University.Google Scholar
  3. 3.
    Bennett, F.E.: Conjugate orthogonal latin squares and Mendelsohn designs. Ars Comb.15, 51–62 (1985)Google Scholar
  4. 4.
    Bennett, F.E., Sotteau, D.: Almost resolvable decompositions ofK n*. J. Comb. Theory (B)30, 228–232 (1981)Google Scholar
  5. 5.
    Hanani, H.: On resolvable balanced incomplete block designs. J. Comb. Theory (A)17, 275–289 (1974)Google Scholar
  6. 6.
    Heinrich, K., Lindner, C.C., Rodger, C.A.: Almost resolvable decompositions of 2K n into cycles of odd length. J. Comb. Theory (A) (to appear)Google Scholar
  7. 7.
    Horton, J.D., Roy, B.K., Schellenberg, P.J., Stinson, D.R.: On decomposing graphs into isomorphic uniform 2-factors, Ann. Discrete Math.27, 297–319 (1985)Google Scholar
  8. 8.
    Huang, C., Kotzig, A., Rosa, A.: On a variation of the Oberwolfach problem. Discrete Math.27, 261–277 (1979)Google Scholar
  9. 9.
    Lindner, C.C., Rodger, C.A.: Nesting and almost resolvability of pentagon systems. (preprint)Google Scholar
  10. 10.
    Zhang, X.: On the existence of (v, 4, 1)-PMD. (preprint)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • James Burling
    • 1
  • Katherine Heinrich
    • 2
  1. 1.SUNYOswegoUSA
  2. 2.SFUBurnabyCanada

Personalised recommendations