Graphs and Combinatorics

, Volume 3, Issue 1, pp 325–339 | Cite as

Enumeration of parallelogram polyominoes with given bond and site perimeter

  • M. P. Delest
  • D. Gouyou-Beauchamps
  • B. Vauquelin


We give the generating function for parallelogram polyominoes according to the bond perimeter and the site perimeter. In this last case, we give an asymptotic evaluation for their number. According to the two parameters an exact formula for their number is found which gives some numbers closed to the Narayana's numbers.


Generate Function Exact Formula Asymptotic Evaluation Site Perimeter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Delest, M.: Generating functions for column-convex polyominoes, Bordeaux Report 8503. J. Comb. Theory (A) (to appear)Google Scholar
  2. 2.
    Delest, M., Viennot, G.: Algebraic languages and polyominoes enumeration. Theor. Comput. Sci.34, 169–206 (1984)Google Scholar
  3. 3.
    Dhar, D., Phani, M.K., Barma, M.: Enumeration of directed site animals on two-dimensional lattices. J. Phys. A: Math. Gen.15, L279-L284 (1982)Google Scholar
  4. 4.
    Flajolet, P.: Mathematical Analysis of algorithms and data Structures. In: A Graduate Course in Computational Theory. Computer Science Press 1985Google Scholar
  5. 5.
    Gessel, I., Viennot, G.: Binomial determinants, Paths and Hook lengths formulae. Advances in Math.,36, 300–321 (1986)Google Scholar
  6. 6.
    Golomb, S.: Polyominoes. New York: Scribner 1965Google Scholar
  7. 7.
    Gouyou-Beauchamps, D.: Deux propriétés du langage de Lukasiewicz, RAIRO, dec.3, 13–24 (1975)Google Scholar
  8. 8.
    Gouyou-Beauchamps, D., Viennot, G.: Equivalence of the two-dimensional directed animal problem. Appl. Maths. (to appear)Google Scholar
  9. 9.
    Klarner, D.: My life among the polyominoes. In: The Mathematical Gardner, pp. 243–262. Belmont CA: Wadsworth 1981Google Scholar
  10. 10.
    Kreweras, G.: Joint distributions of three descriptive parameters of bridges. In: Colloque de Combinatoire énumérative. Lecture Notes in Mathematics 1234, pp. 177–191. Montréal: UQAM 1985Google Scholar
  11. 11.
    Narayana, T.V.: A partial order and its applications to probability Theory. Sankhya,21, 91–98 (1959)Google Scholar
  12. 12.
    Polya, G.: On the number of certain lattice polygons. J. Comb. Theoory6, 102–105 (1969)Google Scholar
  13. 13.
    Read, R.C.: Contributions to the cell growth problem. Canad. J. Math.14, 1–20 (1962)Google Scholar
  14. 14.
    Viennot, G.: Problèmes combinatoires posés par la Physique statistique. Séminaire Bourbaki, 626, Feb. 1984. In: Astérisque, pp. 121–122, 225–246. Soc. Math. France 1985Google Scholar
  15. 15.
    Viennot, G.: Enumerative combinatorics and algebraic languages. In: Proc. FCT' 85. Lecture Notes in Computer Science 199, edited by L. Budach, pp. 450–464. Berlin-Heidelberg-New York: Springer 1985Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • M. P. Delest
    • 1
  • D. Gouyou-Beauchamps
    • 1
  • B. Vauquelin
    • 1
  1. 1.Université de Bordeaux I, U.E.R. de Mathématiques et D'Informatique Unité associée au C.N.R.S. n°226Talence CedexFrance

Personalised recommendations