Advertisement

Graphs and Combinatorics

, Volume 2, Issue 1, pp 269–275 | Cite as

On sets of integers with the Schur property

  • Jaroslav Nešetřil
  • Vojtěch Rödl
Article
  • 36 Downloads

Abstract

We investigate sets of integers for which Rado and Schur theorems are true from the point of view of their local density. We establish the existence of locally sparse Rado and Schur sets in a strong sense.

Keywords

Local Density Strong Sense 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Erdös, P., Hajnal, A.: On chromatic number of graphs and set systems. Acta Math. Acad. Sci. Hung.17, 61–99 (esp. 94–99) (1966)Google Scholar
  2. 2.
    Erdös, P., Nešetřil, J., Rödl, V.: On Pisier type problems and results (in preparation)Google Scholar
  3. 3.
    Graham, R.L.: Rudiments of Ramsey theory. Reg. Conf. Ser. Math.45, (1981)Google Scholar
  4. 4.
    Nešetřil, J., Rödl, V.: A short proof of the existence of highly chromatic hypergraphs without short cycles. J. Comb. Theory (B)27, 225–227 (1979)Google Scholar
  5. 5.
    Nešetřil, J., Rödl, V.: Partition Theory and its Applications. London Math. Soc. Lect. Note Ser.38, 96–157 (1979)Google Scholar
  6. 6.
    Nešetřil, J., Rödl, V.: Dual Ramsey Type Theorems. In: Proc. of VIII Winter School on Abstract Analysis, edited by Z. Frolik, pp. 121–123. Prague 1980Google Scholar
  7. 7.
    Nešetřil, J., Rödl, V.: Finite Union Theorem with restrictions. Graphs and Combinatorics (to appear)Google Scholar
  8. 8.
    Schur, I.: Uber die Kongruenzx m +y m congruentz m (modp). Jahresber Dtsch. Math.-Ver., 114–116 (1916)Google Scholar
  9. 9.
    Spencer, J.: Restricted Ramsey Configuration. J. Comb. Theory (A)19, 277–286 (1975)Google Scholar
  10. 10.
    Szemirédi, E.: On sets of integers containing nok elements in arithmetic progression. Acta Arith.27, 199–245 (1975)Google Scholar
  11. 11.
    Rado, R.: Studien zur Kombinatorik. Math. Z.36, 424–480 (1933)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Jaroslav Nešetřil
    • 1
  • Vojtěch Rödl
    • 2
    • 3
  1. 1.Department of MathematicsCharles UniversityPrague 1Czechoslovakia
  2. 2.Department of MathematicsFJFI, ČVUTPraha 1Czechoslovakia
  3. 3.AT & T Bell LaboratoriesMurray HillUSA

Personalised recommendations