Graphs and Combinatorics

, Volume 2, Issue 1, pp 113–121 | Cite as

The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent

  • P. Erdös
  • P. Frankl
  • V. Rödl


LetH be a fixed graph of chromatic numberr. It is shown that the number of graphs onn vertices and not containingH as a subgraph is\(2^{(\begin{array}{*{20}c} n \\ 2 \\ \end{array} )(1 - \frac{1}{{r - 1}} + o(1))} \). Leth r (n) denote the maximum number of edges in anr-uniform hypergraph onn vertices and in which the union of any three edges has size greater than 3r − 3. It is shown thath r (n) =o(n2) although for every fixedc < 2 one has limn→∞h r (n)/n c = ∞.


Asymptotic Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N.: Personal communication 1985Google Scholar
  2. 2.
    Behrend, F.A.: On sets of integers which contain no three elements in arithmetic progression Proc, Nat. Acad. Sci.,23, 331–332 (1946)Google Scholar
  3. 3.
    Brown, W.G., P. Erdös, V.T. Sós: Some extremal problems onr-graphs. In: Proc. Third Ann. Arbor Conf. on Graph Th., pp. 53–63. New York: Academic Press 1973Google Scholar
  4. 4.
    de Caen, D.: Extension of a theorem of Moon and Moser on complete subgraphs. Ars Comb.16, 5–10 (1983)Google Scholar
  5. 5.
    de Caen, D.: On Turán's hypergraph problem. Ph.D. Thesis, University of Toronto 1982Google Scholar
  6. 6.
    Erdös, P.: On sequences of integers no one of which divides the product of two others and on related problems. Mitt. Forschung. Inst. Math. Mech. Tomsk,2, 74–82 (1938)Google Scholar
  7. 7.
    Erdös, P., Stone, A.H.: On the structure of linear graphs. Bull. Amer. Math. Soc.,52, 1087–1091 (1946)Google Scholar
  8. 8.
    Erdös, P., Kleitman, D.J., Rothschild, B.L.: Asymptotic enumeration ofK n-free graphs. In: International Coll. Comb., Atti dei Convegni Licei 17, vol. 2, pp. 19–27. Rome 1976Google Scholar
  9. 9.
    Erdös, P., Simonovits, M.: A limit theorem in graph theory. Studia Sci. Mat. Hung. Acad.1, 51–57 (1966)Google Scholar
  10. 10.
    Erdös, P.: Problems and results in combinatorial analysis. In: Colloq. Internationale sulle Teorie Combinatoria, Rome, 1973, vol. 2, pp. 3–17. Rome: Acad. Naz. Licei 1976Google Scholar
  11. 11.
    Frankl, P., Fiiredi, Z.: An exact result for 3-graphs. Discrete Math.50, 323–328 (1984)Google Scholar
  12. 12.
    Frankl, P., Füredi, Z.: Traces of finite sets (in preparation)Google Scholar
  13. 13.
    Frankl, P., Rödl V.: Lower bounds for Turán's problem. Graphs and Combinatorics1, 27–30 (1985)Google Scholar
  14. 14.
    Giraud, G.: unpublished (1983)Google Scholar
  15. 15.
    Kleitman, D.J., Winston, K.J.: The asymptotic number of lattices. In: Combinatorial Mathematics, Optimal Designs and their Applications, edited by Shrivastava. Ann. Discrete Math.6, 243–249 (1980)Google Scholar
  16. 16.
    Kolaitis, P.H., Prömel, H.J., Rothschild, B.L.:K 1+1-free graphs: asymptotic structure and a 0–1 law (manuscript)Google Scholar
  17. 17.
    Mantel, W.: Problem 28. Wiskundige Opgaven10, 60–61 (1907)Google Scholar
  18. 18.
    Rödl, V.: On a packing and covering problem. Europ. J. Comb.5, 69–78 (1985)Google Scholar
  19. 19.
    Rödl, V.: On universality of graphs with uniformly distributed edges. Discrete Math. (to appear)Google Scholar
  20. 20.
    Roth, K.F.: On certain sets of integers. J. London Math. Soc.28, 104–109 (1953)Google Scholar
  21. 21.
    Ruzsa, I.Z., Szemerédi, E.: Triple systems with no six points carrying three triangles. Coll. Math. Soc. Janos Bolyai18, 939–945 (1978)Google Scholar
  22. 22.
    Szemerédi, E.: Regular partitions of graphs. In: Proc. Colloq. Int. CNRS, pp. 399–401. Paris: CNRS 1976Google Scholar
  23. 23.
    Turán, P.: An extremal problem in graph theory (in Hungarian). Mat. Fiz. Lapok48, 436–452 (1941)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • P. Erdös
    • 1
  • P. Frankl
    • 2
  • V. Rödl
    • 3
    • 4
  1. 1.Mathematical Institute of the Hungarian Academy of ScienceBudapestHungary
  2. 2.CNRSQuai Anatole FranceParisFrance
  3. 3.Department of MathematicsFJFI, ČVUTPraha 1Czechoslovakia
  4. 4.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations