Graphs and Combinatorics

, Volume 2, Issue 1, pp 101–112 | Cite as

Association schemes and quadratic transformations for orthogonal polynomials

  • Laura Chihara
  • Dennis Stanton
Article

Abstract

Special cases of the Askey-Wilson polynomials are the eigenmatrices of the classical association schemes. Three constructions on the schemes — multiple polynomial structures, bipartite halves, and antipodal quotients — give quadratic transformations for the polynomials. It is shown that these transformations essentially follow from a quadratic transformation for the Askey-Wilson polynomials. Explicit formulas for the eigenmatrices of three related association schemes are given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Askey, R., Wilson, J.: A set of orthogonal polynomials that generalize the Racah coefficients or 6-j symbols. SIAM J. Math. Anal.10, 1008–1016 (1979)Google Scholar
  2. 2.
    Askey, R., Wilson, J.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc.319 (1985)Google Scholar
  3. 3.
    Bailey, W.: Generalized Hypergeometric Series. Cambridge: Cambridge University Press 1935Google Scholar
  4. 4.
    Bannai, E., Bannai, E.: How manyP-polynomial structures can an association scheme have? Europ. J. Comb.,1, 289–298 (1980)Google Scholar
  5. 5.
    Bannai, E., Ito, T.: Algebraic Combinatorics 1. Menlo Park, California: Benjamin/Cummings 1984Google Scholar
  6. 6.
    Biggs, N.: Algebraic Graph Theory. Cambridge: Cambridge University Press 1974Google Scholar
  7. 7.
    Brower, A., Cohen, A., Neumaier, A.: Distance regular graphs (to appear)Google Scholar
  8. 8.
    Delsarte, P.: An algebraic approach to the association schemes of coding theory. Philips Research Report Suppl.10 (1973)Google Scholar
  9. 9.
    Dunkl, C.: Orthogonal functions on some permutation groups. Proc. Symp. Pure Math.34, 129–147 (1979)Google Scholar
  10. 10.
    Foata, D.: Combinatoire des identites sur les polynomes orthgonaux. In: Proceedings of the International Congress of Mathematicians, Warszaw, pp. 1541–1553. Amsterdam-Oxford-New York: North Holland 1983Google Scholar
  11. 11.
    Leonard, D.: Orthogonal polynomials, duality, and association schemes. SIAM J. Math. Anal.13, 656–663 (1982)Google Scholar
  12. 12.
    Sears, D.: On the transformation theory of basic hypergeometric functions. Proc. London Math. Soc., III. Ser.53, 158–180 (1951)Google Scholar
  13. 13.
    Slater, L.: Generalized Hypergeometric Functions. Cambridge: Cambridge University Press 1966Google Scholar
  14. 14.
    Stanton, D.: Product formulas forq-Hahn polynomials. SIAM J. Math. Anal.11, 100–107 (1980)Google Scholar
  15. 15.
    Stanton, D.: Someq-Krawtchouk polynomials on Chevalley groups, Amer. J. Math.102, 625–662 (1980)Google Scholar
  16. 16.
    Stanton, D.: Orthogonal polynomials and Chevalley groups. In: Special Functions: Group Theoretical Aspects and Applications, edited by R. Askey, T.H. Koornwinder, W. Schempp, pp. 87–128. Boston: Reidel 1984Google Scholar
  17. 17.
    Viennot, G.: Une theorie combinatoire des polynomes orthogonaux generaux. In: Lecture Notes, Universite du Quebec a Montreal 1983Google Scholar
  18. 18.
    Vilenkin, N.: Special Functions and the Theory of Group Representations. Translations American Mathematical Society 22. Providence, Rhode Island: AMS 1968Google Scholar
  19. 19.
    Chihara, T.: An Introduction to Orthogonal Polynomials. New York: Gordon and Breach 1978Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Laura Chihara
    • 1
  • Dennis Stanton
    • 2
  1. 1.Department of MathematicsSt. Olaf CollegeNorthfieldUSA
  2. 2.School of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations