Graphs and Combinatorics

, Volume 6, Issue 2, pp 187–195 | Cite as

On ramsey families of sets

  • Vojtěch Rödl
Original Papers


The main result of this paper is a lemma which can be used to prove the existence of highchromatic subhypergraphs of large girth in various hypergraphs. In the last part of the paper we use amalgamation techniques to prove the existence for everyl, k ≥ 3 of a setA of integers such that the hypergraph having as edges all the arithmetic progressions of lengthk inA has both chromatic number and girth greater thanl.


Chromatic Number Arithmetic Progression Large Girth Amalgamation Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Erdös, P., Hajnal, A.: On chromatic number of graphs and set-systems. Acta Math. Acad. Sci. Hung.17, 61–99 (1966)Google Scholar
  2. 2.
    Erdös, P., Rado, R.: A combinatorial theorem, J. London Math. Soc.25, 249–255 (1950)Google Scholar
  3. 3.
    Graham, R.L., Nešetřil, J.: Large minimal sets which force long arithmetic progressions. J. Comb. Theory (A)42, 270–276 (1986)Google Scholar
  4. 4.
    Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey Theory. New York: John Wiley & Sons 1980Google Scholar
  5. 5.
    Hales, A.W., Jewett, R.I.: Regularity and positional games. Trans. Amer. Math. Soc.106, 222–229 (1963)Google Scholar
  6. 6.
    Nešetřil, J., Rödl, V.: Partition (Ramsey) theory—A survey. Colloq. Math. Soc. Janos Bolyai.18, 759–792 (1976)Google Scholar
  7. 7.
    Prömmel, H.J., Rödl, V.: An elementary proof of the canonizing version of Galai-Witt's theorem. J. Comb. Theory (A)42, 144–149 (1986)Google Scholar
  8. 8.
    Prömmel, H.J., Rothschild, B.L.: Restricted Gallai Witt theorem. (to appear)Google Scholar
  9. 9.
    Spencer, J.: Restricted Ramsey configurations. J. Comb. Theory (A)19, 278–286 (1975)Google Scholar
  10. 10.
    Szemerédi: On sets of integers containing nok elements in arithmetic progression. Acta Arith.27, 199–245 (1975)Google Scholar
  11. 11.
    van der Waerden, B.L.: Beweis einer Baudetschen Vermutung. Nieuw Arch. Wisk.15, 212–216 (1927)Google Scholar
  12. 12.
    Nešetřil, J., Rödl, V.: Sparse Ramsey graphs. Combinatorica4, 71–78 (1984)Google Scholar
  13. 13.
    Ramsey, F.P.: On a problem of formal logic, Proc. London Math. Soc.30, 264–286 (1930)Google Scholar
  14. 14.
    Erdös, P., Rado, R.: Combinatorial theorems on classifications of subsets of a given set. Proc. London Math. Soc.2, 417–439 (1952)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Vojtěch Rödl
    • 1
    • 2
  1. 1.AT&T Bell LaboratoriesMurray HillUSA
  2. 2.Emory UniversityAtlantaUSA

Personalised recommendations