, Volume 40, Issue 1, pp 289–323 | Cite as

Genetic fine structure and complementation at the albino locus in spider mites (Tetranychus species: Acarina)

  • G. H. Ballantyne


Two mutations inTetranychus urticae and nine inTetranychus pacificus, all originating spontaneously, block the production of red and yellow carotenoid pigments in these spider mite species. Inter-mutant crosses were carried out to study complementation and recombination relationships between the mutations. InT. urticae, the two albino mutants complement one another completely, i.e., crosses between them produce wild-type hybrid females; while they recombine with a frequency of 0.05%. Of the nine mutants inT. pacificus, fivep mutants in general are complementary to a high degree with foura mutants.p mutants fail to complement one another, while somea mutants are mutually complementary to a slight degree. Scoring the degree of complementation produced by all possible combinations of mutants permits the construction of a linear complementation map. Certain combinations, however, are exceptional to such a representation. Moreover, marked reciprocal differences in complementation indicate that maternal effects are involved, implying that the albino locus may control more than one enzymatic step. Attempts to derive a genetic map were impeded by the absence of suitable linked markers, by a pronounced maternal effect (high pigmentation) in the haploid F2 males, and by the appearance of “pseudowild” type F2 males. The given genetic sequence, although comparable in a limited fashion to the complementation map, is considered tentative. “Pink” types appeared in crosses with certainp mutants. These were due to mutation at a separate locus, called “rose”, and seem to involve the production of pink pigments in an alternative or substitute pathway. A scheme attempting to orientate the present state of understanding of pigmentation in spider mites is presented.


Carotenoid Maternal Effect Spider Mite Albino Mutant Reciprocal Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernstein, H., R. S. Edgar &G. H. Denhardt (1965). Intragenic complementation among temperature sensitive mutants of bacteriophage T4D.Genetics 51: 987–1002.PubMedGoogle Scholar
  2. Blauvelt, W. E. (1945). The internal morphology of the common red spider mite,Tetranychus telarius (L.)Mem.Cornell Univ. Agric. Exp. Stn. 270: 1–35.Google Scholar
  3. Boudreaux, H. B. (1963). Biological aspects of some phytophagous mites.Ann. Rev. Entomol. 8: 137–154.Google Scholar
  4. Cagle, L. R. (1949). Life history of the two-spotted spider mite.Tech. Bull. Va. Agric Expt. Stn. 113: 1–31.Google Scholar
  5. Carlson, E. A. (1959a). Comparative genetics of complex loci.Quart. Rev. Biol. 34: 33–67.PubMedGoogle Scholar
  6. Carlson, E. A. (1959b). Allelism, complementation and pseudo-allelism at thedumpy locus inDrosophila melanogaster.Genetics 44: 347–373.Google Scholar
  7. Davis, R. H. &V. L. Woodward (1962). The relationship between gene suppression and aspartate transcarbamylase activity inpyr-3 mutants ofNeurospora.Genetics 47: 1075–1083.PubMedGoogle Scholar
  8. Dorn, G. L. &A. B. Burdick, (1962). On the recombinational structure and complementation relationships in them-dy complex ofDrosophila melanogaster.Genetics 47: 503–518.Google Scholar
  9. Fincham, J. R. S. (1966). Genetic Complementation. (Microbial and molecular biology series). Benjamin, Amsterdam.Google Scholar
  10. Giles, N. H. (1963). Genetic fine structure in relation to function inNeurospora. “Genetics Today”. Proc. XI Int. Congr. Genetics Netherlands2: 17–30.Google Scholar
  11. Green, M. M. (1963a). Interallelic complementation and recombination at therudimentary wing locus inDrosophila melanogaster.Genetica 34: 242–253.Google Scholar
  12. Green M. M. (1963b). Genetic fine structure inDrosophila. “Genetics Today”. Proc. XI Int. Congr. Genetics, Netherlands2: 37–49.Google Scholar
  13. Helle, W. (1962). Genetics of resistance to organophosphorous compounds and its relation to diapause inTetranychus urticae Koch (Acari).Tijdschr. Pl. ziekt. 68: 155–195.Google Scholar
  14. Helle, W. (1965). Inbreeding depression in an arrhenotokous mite (Tetranychus urticae Koch).Ent. exp. & appl. 8: 299–304.Google Scholar
  15. Helle, W. (1967). Fertilization in the two-spotted spider mite (Tetranychus urticae: Acari).Ent. exp. & appl. 10: 103–110.Google Scholar
  16. Helle, W. &A. H. Pieterse (1965). Genetic affinities between adjacent populations of spider mites (Tetranychus urticae Koch).Ent. exp. & appl. 8: 305–308.Google Scholar
  17. Helle, W. &A. Q. van Zon (1966). Albinism in two spider mite species.Genen en Phaenen 11: 24–25.Google Scholar
  18. Helle, W. &A. Q. Van Zon (1967). Rates of spontaneous mutation in certain genes of an arrhenotokous mite,Tetranychus pacificus. Ent. exp. & appl. 10: 189–193.Google Scholar
  19. Huang, P. C. (1964). Recombination and complementation of albino mutants inNeurospora.Genetics 49: 453–469.PubMedGoogle Scholar
  20. Ishikawa, T. (1962). Genetic studies ofad-8 mutants inNeurospora crassa. II. Interallelic complementation at thead-8 locus.Genetics 47: 1755–1770.PubMedGoogle Scholar
  21. Kapuler, A. M. &H. Bernstein (1962). The relationship of genetic and complementation maps (abstract).Genetics 47: 964.Google Scholar
  22. Kapuler, A. M. &H. Bernstein (1963). A molecular model for an enzyme based on a correlation between the genetic and complementation maps of the locus specifying the enzyme.J. Mol. Biol. 6: 443–451.Google Scholar
  23. Metcalf, R. L. &I. M. Newell (1962). Investigations of the biochromes of mites.Ann. Entomol. Soc. Amer. 55: 350–353.Google Scholar
  24. Lee, W. L. (1966). Pigmentation of the marine isopodIdothea granulosa (Rathke)Comp.Biochem. Physiol. 19: 13–27.Google Scholar
  25. Overmeer, W. P. J. (1967). Genetics of resistance to Tedion inTetranychus urticae C. L. Koch.Arch. Néerland. Zoologie 17: 295–349.Google Scholar
  26. Schrader, F. (1923). Haploidie bei einer Spinnmilbe.Arch. Mikrosk. Anat. 97: 610–622.Google Scholar
  27. Schulten, G. G. M. (1968). Genetics of organophosphate resistance in the twospotted spider mite (Tetranychus urticae Koch).,Publ. Roy. Trop. Inst., Amsterdam, Netherlands, No. 57.Google Scholar
  28. Ulmann, A., F. Jacob &J. Monod (1968). On the subunit structure of wildtype versus complemented β-galactosidase ofEscherichia coli.J. Mol. Biol. 32: 1–13.PubMedGoogle Scholar
  29. Welshons, W. J. &E. S. Von Halle (1962). Pseudoallelism at theNotch locus inDrosophila.Genetics 47: 743–759.PubMedGoogle Scholar
  30. Zon, A. Q. van &W. Helle (1966). Albinism as a marker inTetranychus pacificus.Ent. exp. & appl. 9: 205–208.Google Scholar
  31. Zon, A. Q. van &W. Helle (1967). Linkage studies in the pacific spider miteTetranychus pacificus. I. Genes for pigmentless, white eye, stork and organophosphate resistance.Ent. exp. & appl. 10: 69–74.Google Scholar

Copyright information

© Martinus Nijhoff 1969

Authors and Affiliations

  • G. H. Ballantyne
    • 1
  1. 1.Laboratory of Applied EntomologyUniversity of AmsterdamThe Netherlands

Personalised recommendations