Advertisement

Clinical & Experimental Metastasis

, Volume 7, Issue 2, pp 127–167 | Cite as

Interactions between cancer cells and the microvasculature: a rate-regulator for metastasis

  • Leonard Weiss
  • F. William Orr
  • Kenneth V. Honn
Review

Abstract

Hematogenous metastasis is a major consideration in the staging, treatment and prognosis of patients with cancer. Key events affecting hematogeneous metastasis occur in the microvasculature. This is a brief, selective review of some interactions involving cancer cells and the microvasculature in pathologic sequence, specifically: (1) intravasation of cancer cells; (2) the arrest of circulating cancer cells in the microvasculature; (3) cancer cell trauma associated with arrest; (4) microvascular trauma; (5) the inflammatory; and (6) the hemostatic coagulative responses associated with arrest, and finally (7) angiogenesis, leading to tumor vascularization. The evidence shows that through a series of complex interactions with cancer cells, the microvasculature acts as a rate-regulator for the metastatic process, in addition to providing routes for cancer cell dissemination and arrest sites for cancer cell emboli.

Keywords

Public Health Cancer Cell Cancer Research Complex Interaction Tumor Vascularization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abraham, J. A., Mergia, A., Whang, J. L., Tumolo, A., Friedman, J., Hjerrild, K. A., Gospodarowicz, D., andFiddes, J. C., 1986, Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor.Science,233, 545–548.PubMedGoogle Scholar
  2. [2]
    Adams, S. L., Boettiger, D., Foct, R. J., Holtzer, H., andPacifici, M., 1982, Regulation of the synthesis of extracellular matrix components in chondroblasts transformed by a temperature-sensitive mutant of Rous sarcoma virus.Cell,30, 373–384.PubMedGoogle Scholar
  3. [3]
    Adamson, I. Y. R., Orr, F. W., andYoung, L., 1986, Effects of injury and repair of the pulmonary endothelium on lung metastasis after bleomycin.J. Pathol.,150, 279–287.PubMedGoogle Scholar
  4. [4]
    Adamson, I. Y. R., Young, L., andOrr, F. W., 1987, Tumor metastasis after hyperoxic injury and repair of the pulmonary enothelium.Lab. Invest.,57, 71–77.PubMedGoogle Scholar
  5. [5]
    Albrechtsen, R., Nielsen, M., Wewer, U., Engvall, E., andRuoslahti, E., 1981, Basement membrane changes in breast cancer detected by immunohistochemical staining for laminin.Cancer Res.,41, 5076–5081.PubMedGoogle Scholar
  6. [6]
    Alitalo, K., Keski-Oja, J., Hedman, K., andVaheri, A., 1982, Loss of different pericellular matrix components of rat cells transformed by a T-class ts mutant of Rouse sarcoma virus.Virology,119, 347–357.PubMedGoogle Scholar
  7. [7]
    Armour, J. A., andRandall, W. C., 1971, Canine left ventricular intramyocardial pressures.Am. J. Physiol.,220, 1833–1839.PubMedGoogle Scholar
  8. [8]
    Auerbach, R., Wei Cheng Lu, Pardon, E., Gumkowski, F., Kaminska, G., andKaminski, M., 1987, Specificity of adhesion between tumor cells and capillary endothelium: anin vitro correlate of preferential metastasisin vivo.Cancer Res.,47, 1492–1496.PubMedGoogle Scholar
  9. [9]
    Aumailley, M., andTimpl, R., 1986, Attachment of cells to basement membrane collagen Type IV.J. Cell Biol.,103, 1569–1575.PubMedGoogle Scholar
  10. [10]
    Ausprunk, D. H., andFolkman, J., 1977, Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis.Microvasc. Res.,14, 53–65.PubMedGoogle Scholar
  11. [10a]
    Barsky, S. M., Siegal, G. P., Jannotta, F., andLiotta, L. A., 1983, Loss of basement membrane components by invasive tumors but not by their benign counterparts.Lab Invest.,49, 140–147.PubMedGoogle Scholar
  12. [11]
    Bastida, E., Almiral, L., Jamiesin, G. A., andOrdinas, A., 1987, Cell surface sialylation of two human tumor cell lines and its correlation with their platelet-activating activity.Cancer Res.,47, 1767–1770.PubMedGoogle Scholar
  13. [12]
    Bastida, E.,Hass, T. A.,Almirall, L.,Lauri, D.,Orr, F. W., andBuchanan, M. R., 1988, Lipoxygenase-derived fatty acid metabolites influence tumor cell adhesion to endothelial cells and their extracellular matrix.J. Clin. Invest. (in the press).Google Scholar
  14. [13]
    Batchev, A. C., Riser, B. L., Hellner, E. G., Fligiel, S. E. G., andVarani, J., 1986, Phorbol ester binding and phorbol ester-induced arachidonic acid metabolism in a highly responsive murine fibrosarcoma cell line and in a less-responsive variant.Clin. Expl. Metastasis,4, 51–61.Google Scholar
  15. [14]
    Ben-Ze'ev, A., andRaz, A., 1985, Relationship between the organization and synthesis of vimentin and the metastatic capability of B16 melanoma cells.Cancer Res.,45, 2232–2641.Google Scholar
  16. [15]
    Bettelheim, R., Mitchell, D., andGusterson, B. A., 1984, Immunocytochemistry in the identification of vascular invasion in breast cancer.J. Clin. Pathol.,37, 364–000.PubMedGoogle Scholar
  17. [16]
    Bevilacqua, M. P., Pober, J. S., Wheeler, M. E., Cotran, R. S., andGimbrone, M. A., Jr, 1985, Interleukin-1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines.J. Clin. Invest.,76, 2003–2011.PubMedGoogle Scholar
  18. [16a]
    Blasi, F., Vassalli, J. D., andDano, K., 1987, Urokinase-type plasminogen activator: proenzyme, receptor, and inhibitors.J. Cell Biol.,104, 801–804.PubMedGoogle Scholar
  19. [17]
    Borgeat, P., andSamuelsson, B., 1979, Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes: formation of a novel dihydroxyeicosatetranenoic acid.J. Biol. Chem.,254, 2643–2646.PubMedGoogle Scholar
  20. [18]
    Brown, P. J., andJuliano, R. L., 1986, Expression and function of a putative cell surface receptor for fibronectin in hamster and human cell lines.J. Cell Biol.,1103, 1595–1603.Google Scholar
  21. [19]
    Buchanan, M. R., Hass, T. A., Lagarde, M., andGuichardant, M., 1985, 13-hydroxy-octadecadienoic acid is the vessel wall chemorepellent factor, LOX.J. Biol. Chem.,260, 16056–16059.PubMedGoogle Scholar
  22. [20]
    Buchanan, M. R., Butt, R. W., Hirsh, J., Markham, B. A., andNazir, D. J., 1986, Role of lipoxygenase metabolism in platelet function: effect of aspirin and salicylate.Prost. Leuk. Med.,21, 157–168.Google Scholar
  23. [21]
    Carlsson, J., Stalnacke, G. G., Acker, H. et al., 1979, The influence of oxygen on viability and proliferation in cellular spheroids.Int. J. Rad. Oncol. Bio. Phys.,5, 2011–2020.Google Scholar
  24. [22]
    Carmel, R. J., andBrown, J. M., 1977, The effect of cyclophosphamide and other drugs on the incidence of pulmonary metastasis in mice.Cancer Res.,37, 145–151.PubMedGoogle Scholar
  25. [23]
    Carrell, N., Fitzgerald, L. A., Steiner, B., Erickson, H. P., andPhillips, D. R., 1985, Structure of human platlet membrane glycoproteins IIb and IIIa as determined by electron microscopy.J. Biol. Chem.,260, 1743.PubMedGoogle Scholar
  26. [24]
    Cavender, D., Saegusa, Y., andZiff, M., 1987, Stimulation of endothelial cell binding of lymphocytes by tumor necrosis factor.J. Immunol.,139, 1885–1860.PubMedGoogle Scholar
  27. [25]
    Chang, Y. S., Fitzgerald, L. A., Grossi, I. M., Sundram, U., Murray, J. A., andHonn, K. V., 1988, Tumor cell expression of MRNA's coding for the integrin receptors.FASEB J.,2, A1406.Google Scholar
  28. [26]
    Charo, I. F., Bekeart, L. S., andPhillips, D. R., 1987, Platelet glycoprotein IIb–IIIa-like proteins mediate endothelial cell attachment to adhesive proteins and the extracellular matrix.J. Biol. Chem.,262, 9935–9938.PubMedGoogle Scholar
  29. [27]
    Chopra, H., Hatfield, J. S., Chang, Y. S., Grossi, I. M., Fitzgerald, L. A., O'Gara, C. Y., Marnett, L. J., Diglio, G. A., Taylor, J. D., andHonn, K. V., 1988, Role of tumor cell cytoskeleton and membrane glycoprotein IRGIIb/IIIa in platelet adhesion to tumor cell membrane and tumor cell induced platelet aggregation.Cancer Res.,48, 3787–3800.PubMedGoogle Scholar
  30. [28]
    Chopra, H.,Onoda, J. M.,Hatfield, J. S.,Fligiel, S. E. G.,Taylor, J. D., andHonn, K. V., 1988, Effect of calcium channel blockers of the phenylalkylamine, benzothiazepine, and dihydropyridine classes on integrity or tumor cell cytoskeleton, mobility of the IRGIIb/IIIa receptor and tumor cell induced platelet aggregation (Submitted).Google Scholar
  31. [29]
    Chung, D. C., Zetter, B. R., andBrodt, D., 1988, Lewis lung carcinoma variants with differing metastatic specificities adhere preferentially to different defined extracellular matrix molecules.Invasion Metastasis,8, 103–117.PubMedGoogle Scholar
  32. [30]
    Cheresh, D. A., 1987, Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor.Proc. Natl. Acad. Sci., USA,84, 6471–6475.Google Scholar
  33. [31]
    Clark, R. A., Stone, P. J., El Hag, A., Calore, J. D., andFranzblau, C., 1981, Myeloperoxidase-catalyzed inactivation of alpha 1-protease inhibitor by human neutrophils.J. Biol. Chem.,256, 3348–3353.PubMedGoogle Scholar
  34. [32]
    Collins, T., Lapierre, L. A., Fiers, W., Strominger, J. L., andPober, J. S., 1986, Recombinant human tumor necrosis factor increase mRNA levels and surface expression of HLA-A, B antigens in vascular endothelial cells and dermal fibroblastsin vitro.Proc. Natl. Acad. Sci., USA,83, 446–450.Google Scholar
  35. [32a]
    Cotran, R. S., 1987, New roles for the endothelium in inflammation and immunity.Am. J. Pathol.,129, 407–413.PubMedGoogle Scholar
  36. [33]
    Cotran, R. S., Gimbrone, M. A. Jr, Bevilacqua, M. P., Mendrick, D. L., andPober, J. S., 1986, Induction and detection of a human endothelial activation antigenin vivo.J. Exp. Med.,164, 661–666.PubMedGoogle Scholar
  37. [34]
    Crissman, J., Hatfield, J. S., Menter, D. G., Sloane, B. F., andHonn, K. V., 1988, Morphological study of interaction of intravascular tumor cells with endothelial cells and subendothelial matrix.Cancer Res.,48, 4065–4072.PubMedGoogle Scholar
  38. [35]
    Crissman, J., Hatfield, J., Schaldenbrand, M., Sloane, B., andHonn, K. V., 1985, Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study.Lab. Invest.,53, 470–478.PubMedGoogle Scholar
  39. [36]
    D'Amore, P. A., andThompson, R. W., 1987, Mechanisms of angiogenesis.Ann. Rev. Physiol.,49, 453–464.Google Scholar
  40. [37]
    D'Amore, P.A., 1988, Antiangiogenesis as a strategy for antimetastasis.Sem. Thromb. Hemostasis,14, 73–78.Google Scholar
  41. [38]
    Dao, T. L., andYogo, H., 1967, Enhancement of pulmonary metastases by X-irradiation in rats bearing mammary cancer.Cancer,20, 2020–2025.PubMedGoogle Scholar
  42. [39]
    Dano, K., Andreason, P. A., Grondahl-Hansen, J., Kristensen, P., Nielsen, L. S., andSkriver, L., 1985, Plasminogen activators, tissue degradation, and cancer.Adv. Cancer Res.,44, 139–266.PubMedGoogle Scholar
  43. [40]
    Davis, W. B., Rennard, S. J., Bitterman, P. B., andCrystal, R., 1983, Pulmonary oxygen toxicity.N. Engl. J. Med.,309, 878–883.PubMedGoogle Scholar
  44. [41]
    Dedhar, S., Ruoslahti, E., andPierschbacher, M. D., 1987, A cell surface receptor complex for collagen type I recognizes the Arg-Gly-Asp sequence.J. Cell Biol.,104, 585–593.PubMedGoogle Scholar
  45. [42]
    Dedhar, S., Argraves, W. S., Suzuki, S., Ruoslahti, E., andPierschbacher, M. D., 1987, Human osteosarcoma cells resistant to detachment by an Arg-Gly-Asp-containing peptide overproduces the fibronectin receptor.J. Cell Biol.,105, 1175–1182.PubMedGoogle Scholar
  46. [43]
    Dennis, J. W., Laferte, S., Waghorne, C., Breitman, J. L., andKerbel, R. S., 1987, Beta 1–6 branching of ASN-linked oligosaccharides is directly associated with metastasis.Science,236, 582–585.PubMedGoogle Scholar
  47. [44]
    Dimitrov, D. S., 1983, Dynamic interactions between approaching surfaces of biological interest.Progr. Surface Sci.,14, 295–423.Google Scholar
  48. [45]
    Duffy, M. J., 1987, Do proteases play a role in cancer invasion and metastasis?Eur. J. Cancer Clin. Oncol.,23, 583–589.PubMedGoogle Scholar
  49. [46]
    Duszyk, M., andDoroszewski, J., 1984, Hydrodynamics of interaction of particles (including cells) with surfaces.Progr. Surface Sci.,15, 369–399.Google Scholar
  50. [47]
    Estrada, J., andNicolson, F. L., 1984, Tumor cell-platelet aggregation does not correlate with metastatic potential of rat 13762 NF mammary adenocarcinoma tumor cell clones.Int. J. Cancer,34, 101–105.PubMedGoogle Scholar
  51. [48]
    Evans, E. A., andParsegian, V. A., 1983, Energetics of membrane deformation and adhesion in cell and vesicle aggregation.Ann. NY Acad. Sci.,416, 13–33.PubMedGoogle Scholar
  52. [49]
    Evans, E. A., Waugh, R., andMelnik, L., 1976, Elastic area compressibility modulus of red cell membrane.Biophys. J.,16, 585–592.PubMedGoogle Scholar
  53. [50]
    Fitzgerald, L. A., Charo, I. F., andPhillips, D. R., 1985, Human and bovine endothelial cells synthesize membrane proteins similar to human platelet glycoproteins IIb and IIIa.J. Biol. Chem.,260, 10893–10896.PubMedGoogle Scholar
  54. [51]
    Fitzgerald, L. A., andPhillips, D. R., 1985, Calcium requirements of the platelet membrane glycoprotein IIb/IIIa complex.J. Biol. Chem.,260, 11366–11374.PubMedGoogle Scholar
  55. [52]
    Fitzgerald, L. A., andPhillips, D. R., 1988, Structure of platelet membrane glycoproteins.Platelet Immunology, edited by T. J. Kumicki and J. George (Philadelphia, J. B. Lippincott).Google Scholar
  56. [53]
    Fitzgerald, L. A., Stiener, B., Rall, S. C. Jr, Lo, S.-S., andPhillips, D. R., 1987, Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone.Biol. Chem.,262, 3936–3939.Google Scholar
  57. [54]
    Fligiel, S. E. G., Perone, P., andVarani, J., 1985, Arachidonic acid metabolism in murine fibrosarcoma cells with differentin vivo andin vitro characteristics.Int. J. Cancer,36, 383–388.PubMedGoogle Scholar
  58. [55]
    Folkman, J., 1985, Toward an understanding of angiogenesis: Search and discovery.Perspect. Biol. Med.,29, 10–36.PubMedGoogle Scholar
  59. [56]
    Folkman, J., andIngber, D.E., 1987, Angiostatic steroids.Ann. Surg.,206, 374–383.PubMedGoogle Scholar
  60. [57]
    Folkman, J., andKlagsbrun, M., 1987, Angiogenic factors.Science,235, 442–447.PubMedGoogle Scholar
  61. [58]
    Fox, E. B., 1985, Linkage of a membrane skeleton to integral membrane glycoproteins in human platelets.J. Clin. Invest.,76, 1673–1683.PubMedGoogle Scholar
  62. [59]
    Fujiwara, S., Wiedmann, H., Timpl, R., Lustig, A., andEngel, J., 1984, Structure and interactions of heparan sulfate proteoglycans from a mouse tumor basement membrane.Eur. J. Biochem.,143, 145–157.PubMedGoogle Scholar
  63. [60]
    Fung, Y. C., 1984,Biomechanics. Mechanical Properties of Living Tissues (New York: Springer), p. 226.Google Scholar
  64. [61]
    Furcht, L. T., 1986, Critical factors controlling angiogenesis: cell products, cell matrix and growth factors.Lab. Invest.,55, 505–509.PubMedGoogle Scholar
  65. [62]
    Gabbert, H., Gerharz, C. D., Ramp, U., andBohl, J., 1987, The nature of host tissue destruction in tumor invasion.Virch. Arch. (Cell Pathol.),52, 513–517.Google Scholar
  66. [63]
    Gabor, H., andWeiss, L., 1985, Mechanically induced trauma suffered by cancer cells in passing through pores in polycarbonate membranes.Invasion Metastasis,5, 71–83.PubMedGoogle Scholar
  67. [64]
    Ganguly, P., andGould, M. L., 1979, Thrombin receptor of human platelets: thrombin binding and antithrombin properties of glycoprotein I.Br. J. Haematol.,42, 137.PubMedGoogle Scholar
  68. [65]
    Garbisa, S., Pozzatti, R., Muschel, R. J., Sattiotti, U., Ballin, M., Goldfarb, G. H., Khoury, G., andLiotta, L. A., 1987, Secretion of type IV collagenolytic protease and metastatic phenotype: induction by transfection with c-Ha-ras but not c-Ha-ras plus AD2-E1a.Cancer Res.,47, 1523–1528.Google Scholar
  69. [66]
    Gasic, G. J., Gasic, T. B., andStewart, C. C., 1968, Antimetastatic effect associated with platelet reduction.Proc. Natl. Acad. Sci., USA,61, 46–52.Google Scholar
  70. [67]
    Gehlsen, K. R.,Argraves, W. S.,Piersbacher, M. D., andRuoslahti, E., 1988, Inhibition ofin vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides (Manuscript submitted).Google Scholar
  71. [68]
    Geiger, B., Tokuyasu, K. T., Dutton, A. H., andSinger, S. J., 1981, Vinculin and intracellular protein localized at specialized sites where microfilaments terminate at cell membranes.Proc. Natl. Acad. Sci., USA,77, 4127–4131.Google Scholar
  72. [69]
    Gimbrone, M. A., Leapman, S. B., Cotran, R. S., andFolkman, J., 1972, Tumor dormancyin vivo be prevention of neovascularization.J. Exp. Med.,136, 261–276.PubMedGoogle Scholar
  73. [70]
    Ginsberg, M. H., Loftus, J., Ryckwaert, J. J., Peirschbacher, M., Pytela, R., Rouslahti, E., andPlow, E. F., 1987, Immunochemical and amino-terminal sequence comparison of two cytoadhesins indicates they contain similar or identical beta subunits and distinct alpha subunits.J. Biol. Chem.,262, 5437–5440.PubMedGoogle Scholar
  74. [71]
    Glaves, D., 1980, Metastasis: reticuloendothelial system and organ retention of disseminated malignant cells.Int. J. Cancer,26, 115–122.PubMedGoogle Scholar
  75. [72]
    Glaves, D., 1983, Correlation between circulating cancer cells and incidence of metastasis.Br. J. Cancer,48, 665–673.PubMedGoogle Scholar
  76. [73]
    Glaves, D., 1983, Role of polymorphonuclear leukocytes in the pulmonary clearance of arrested cancer cells.Invasion Metastasis,3, 160–173.PubMedGoogle Scholar
  77. [74]
    Glaves, D., 1986, Intravascular death of disseminated cancer cells mediated by Superoxide anion.Invasion Metastasis,6, 101–111.PubMedGoogle Scholar
  78. [75]
    Glaves, D., Huben, R. P., andWeiss, L., 1988, Hematogeneous dissemination of cells from human renal adenocarcinomas.Br. J. Cancer,57, 32–35.PubMedGoogle Scholar
  79. [76]
    Gopalakrishna, R., andBarsky, S. H., 1988, Tumor promoter-induced membranebound protein kinase C regulates hematogenous metastasis.Proc. Natl. Acad. Sci., USA,85, 612–616.Google Scholar
  80. [77]
    Gorelik, E., 1987, Augmentation of the antimetastatic effect of anticoagulant drugs by immunostimulation in mice.Cancer Res.,47, 809–815.PubMedGoogle Scholar
  81. [78]
    Gorelik, E., Bere, W., andHerberman, R., 1984, Role of NK cells in the antimetastatic effect of anticoagulant drugs.Int. J. Cancer,33, 87–94.PubMedGoogle Scholar
  82. [79]
    Gross, J. L., Moscatelli, D., Jaffe, E. A., andRefkin, D. B., 1982, Plasminogen activator and collagenase production by cultured capillary endothelial cells.J. Cell Biol.,95, 974–981.PubMedGoogle Scholar
  83. [80]
    Gross, J. L., Moscatelli, D., andRifkin, D. B., 1983, Increased capillary endothelial cell protease activity in response to angiogenic stimuliin vitro.Proc. Natl. Acad. Sci. USA,80, 2623–2627.PubMedGoogle Scholar
  84. [81]
    Grossi, I. M.,Fitzgerald, J. A.,Umbarger, L. A.,Nelson, K. K.,Diglio, C. A.,Taylor, J. D., andHonn, K. V., 1988, Bidirectional control of membrane expression and/or activation of the tumor cell IRGIIb/IIIa receptor and tumor cell adhesion by lipoxygenase products or arachidonic acid and linoleic acid.Cancer Res. (In press).Google Scholar
  85. [82]
    Grossi, I. M., Hatfield, J. S., Fitzgerald, L. H., Newcombe, M., Taylor, J. D., andHonn, K. V., 1988, Role of tumor cell glycoproteins immunologically related to glycoproteins Ib and IIb/IIIa in tumor cell-platlet and tumor cell-matrix interactions.FASEB J.,2, 2385–2395.PubMedGoogle Scholar
  86. [83]
    Hagmar, B., andRyd, W., 1977, Tumor cell locomotion: a factor in metastasis formation? Influence of cytochalasin B on a tumor dissemination pattern.Int. J. Cancer,19, 576–580.PubMedGoogle Scholar
  87. [83a]
    Hajjar, K. A., Hamel, N. M., Harpel, P. C., andNachman, R. L., 1987, Binding of tissue plasminogen activator to cultured human endothelial cells.J. Clin. Invest.,80, 1712–1719.PubMedGoogle Scholar
  88. [84]
    Hart, I. R., Raz, A., andFidler, I. J., 1980, Effect of cytoskeleton disrupting agents on the metastatic behavior of melanoma cells.J. Natl. Cancer Inst.,64, 891–899.PubMedGoogle Scholar
  89. [85]
    Hayman, E. G., Pierschbacher, M. D., andRuoslahti, E., 1985, Detachment of cells from culture substrate by soluble fibronectin peptides.J. Cell Biol.,100, 1948–1954.PubMedGoogle Scholar
  90. [86]
    Hirata, H., andTanaka, K., 1984, Artificial metastases and decrease of fibrinolysis in the nude mouse lung after hemithrocic irradiation.Clio. Exp. Metastasis,2, 311–319.Google Scholar
  91. [87]
    Honn, K. V., Grossi, I. M., Chopra, H., Steinert, B. W., Onoda, J. M., Nelson, K. K., andTaylor, J. D., 1988, Role of tumor cell eicosanoids and membrane glycoproteins IRGpIb and IRGpIIb/IIIa in metastasis.Eicosanoid, Lipid Peroxidation and Cancer, edited by S. Nigam, D. L. H. McBrien and T. G. Slater (Berlin: Springer Verlag) (In press).Google Scholar
  92. [88]
    Honn, K. V., Grossi, I. M., Fitzgerald, L. A., Umbarger, L. A., Diglio, C. A., andTaylor, J. D., 1988, Lipoxygenase products regulate IRGpIIb/IIIa receptor mediated adhesion of tumor cells to endothelial cells, subendothelial matrix and fibronectin.Proc. Soc. exp. Biol. Med.,189, 130–135.PubMedGoogle Scholar
  93. [89]
    Honn, K. V.,Grossi, I. M.,Nelson, K. K.,Umbarger, L. A.,Fitzgerald, L. A.,Hatfield, J. S.,Fligiel, S. E. G.,Steinert, B. W.,Taylor, J. D., andOnoda, J. M., 1988, Correlation among expression of glycoprotein IRGpIIb/IIIa, tumor cell induced platelet aggregation, tumor cell adhesion and lung colonization in elutriated subpopulations of the B16 amelanotic melanoma and Lewis lung carcinomaCancer Res. (In press).Google Scholar
  94. [90]
    Honn, K. V., Grossi, I. M., Steinert, B. W., Chopra, H., Onoda. J. M., Nelson, K. K., andTaylor, J. D., 1988, Lipoxygenase regulation of membrane expression of tumor cell glycoproteins and subsequent metastasis. In:Advances in Prostaglandins, Thromboxane, and Leukotriene Research, Vol. 18, edited by P. Wong, B. Samuelsson and F. Sun (New York: Raven Press) (In press).Google Scholar
  95. [91]
    Honn, K. V., Onoda, J. M., Pampalona, K., Battaglia, M., Neagos, G., Taylor, J. D., Diglio, C. A., andSloane, B. F., 1985, Inhibition by dihydropyridine class calcium channel blockers of tumor cell-platelet-endothelial cell interactionsin vitro metastasisin vivo.Biochem. Pharmacol.,34, 235–141.PubMedGoogle Scholar
  96. [92]
    Honn, K. V., Powers, W. E., andSloane, B. F. (eds), 1986,Mechanisms of Cancer Metastasis. Potential Therapeutic Implications (Boston, MA: Martinus Nijhoff).Google Scholar
  97. [93]
    Honn, K. V., Steinert, B. W., Onoda, J. M., andSloane, B. F., 1987, The role of platelets in metastasis.Biorheology,24, 127–137.PubMedGoogle Scholar
  98. [94]
    Hopkins, N. K., Ogglesby, T. D., Bundy, F. L., andGorman, R. R., 1984, Biosynthesis and metabolism of 15-hydroxy-5,8,11,13-eicosatetranenoic acid by human umbilical vein endothelial cells.J. Bio. Chem.,259, 14048–14053.Google Scholar
  99. [95]
    Humphries, M. J., Matsumoto, K., White, S. L., andOlden, K., 1986, Oligosac-charide modifications by swainsonine treatment inhibits pulmonary colonization by B16-F10 murine melanoma cells.Proc. Natl. Acad. Sci., USA,83, 1752–1756.Google Scholar
  100. [96]
    Humphries, M. J., Olden, K., andYamada, K. M., 1986, A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells.Science,233, 467–470.Google Scholar
  101. [97]
    Humphries, M.J., Matsumoto, K., White, S. L., andOlden, K., 1986, Inhibition of experimental metastasis by castanospermine in mice: blockage of two distinct stages of tumor colonization by liogosaccharide processing inhibitors.Cancer Res.,46, 5215–5222.PubMedGoogle Scholar
  102. [98]
    Humphries, M. J., Yamada, K. M., andOlden, K., 1988, Investigation of the biological effects of anti-cell adhesive synthetic peptides that inhibit experimental metastasis of B16-F10 murine melanoma cells.J. Clin. Invest.,81, 782–790.PubMedGoogle Scholar
  103. [99]
    Hynes, R. O., 1986, Integrins: a family of cell surface receptors.Cell,48, 549–554.Google Scholar
  104. [99a]
    Ishikawa, M., Koga, Y., Hosokawa, M., andKobayashi, H., 1986, Augmentation of B16 melanoma lung colony formation in C57BL/6 mice having marked granulocytosis.Int. J. Cancer,37, 919–924.PubMedGoogle Scholar
  105. [100]
    Jones, C. L., Nelson, K. K., Hatfield, J., Honn, K. V., andOnoda, J. M., 1988, Regulation of metastasis by polymorphonuclear neutrophils.Proc. Am. Assoc. Cancer Res.,27, 62.Google Scholar
  106. [101]
    Jones, P. A., andDe Clerk, Y. A., 1982, Extracellular matrix destruction by invasive tumor cells.Cancer Metastasis Rev.,1, 289–318.PubMedGoogle Scholar
  107. [102]
    Kanclerz, A., andShapman, J. D., 1987, The effectiveness ofcis-platinum, cyclophosphamide and melphalan in treating disseminated tumor cells in mice.Clin. Expl. Metastasis,5, 199–212.Google Scholar
  108. [103]
    Kerbel, R. S., Dennis, J. W., Lagarde, A. E., andFrost, P., 1982, Tumor progression in metastasis: an experimental approach using lectin resistant tumor variants.Metastasis Rev.,1, 99–140.Google Scholar
  109. [104]
    Khato, J., Sati, H., andSuzuki, M., 1979, Filterability and flow characteristics of leukemic and non-leukemic tumor cell suspensions through polycarbonate filters in relation to hematogeneous spread of cancer.Tohoku J. Exp. Med.,128, 273–284.PubMedGoogle Scholar
  110. [105]
    Kieffer, N., Najet, D., Wicki, A., Titeux, M., Heuri, A., Mishal, Z., Breton-Gorius, J., Vainchenker, W., andClemetson, K. J., 1986, Expression of platlet glycoprotein Ibα in HEL cells.J. Biol. Chem.,261, 15854–15862.PubMedGoogle Scholar
  111. [105a]
    Kimura, A. K., Mehta, P., Xiang, J., Lawson, D., Dugger, D., Kao, K. J., andAmbrose, L. L., 1987, The lack of correlation between experimental metastatic potential and platelet aggregating activity of B16 melanoma clones viewed in relation to tumor cell heterogeneity.Clin Expl. Metastasis,5, 125–133.Google Scholar
  112. [106]
    Kinjo, M., 1978, Lodgement and extravasation of tumor cells in blood-borne metastases: an electron microscopic observation.Br. J. Cancer,38, 293–301.PubMedGoogle Scholar
  113. [107]
    Kramer, R. H., Gonzales, R., andNicolson, G. L., 1980, Metastatic tumor cells adhere preferentially to the extracellular matrix underlying vascular endothelial cells.Int. J. Cancer,26, 639–645.PubMedGoogle Scholar
  114. [108]
    Kramer, R. H., Vogel, K. G., andNicolson, G. L., 1982, Solubilization and degradation of subendothelial matrix glycoproteins and proteoglycans by metastatic tumor cells.J. Biol. Chem.,257, 2678–2686.PubMedGoogle Scholar
  115. [109]
    Kramer, R. H., Vogel, K. G., andNicolson, G. L., 1982, Tumor cell interactions with vascular endothelial cells and their extracellular matrix.Prog. Clin. Biol. Res.,89, 333–351.PubMedGoogle Scholar
  116. [110]
    Konstantinov, A. A., Peskin, A. V., Popova, E. Y., Khomutou, G. B., andRuuge, E. K., 1987, Superoxide generation by the respiratory chain of tumor mitochondria.Biochem. Biophys. Acta,894, 1–10.PubMedGoogle Scholar
  117. [111]
    Lapis, K., Paku, S., andLiotta, L. A., 1988, Endothelialization of embolized tumor cells during metastasis formation.Clin. Exp. Metastasis,6, 73–89.PubMedGoogle Scholar
  118. [112]
    Lauri, D.,Orr, F. W.,Bastida, E.,Sauder, D., andBuchanan, M. R., 1988, Differential effects of interleukin-1 and fMLP on chemotaxis and human endothelium adhesivity for A549 tumor cells (Manuscript submitted).Google Scholar
  119. [112a]
    Leroyer, V., Werner, L., Shaughnessy, S., Goddard, G. J., andOrr, F. W., 1987, Chemiluminescence and oxygen radical generation by Walker carcinosarcoma cells following chemotactic stimulation.Cancer Res.,47, 4771–4775.PubMedGoogle Scholar
  120. [113]
    Lichtenstein, A., 1987, Stimulation of respiratory burst of muriperitoneal inflammatory neutrophils by conjugation with tumor cells.Cancer Res.,47, 2211–2217.PubMedGoogle Scholar
  121. [114]
    Lichtenstein, A. K., Kahle, J., Berek, J., andZighelboim, J., 1984, Successful immunotherapy with intraperitoneal Corynebacterium parvum in a murine ovarian cancer model is associated with recruitment of tumor-lytic neutrophils into the peritoneal cavity.J. Immunol.,133, 519–526.PubMedGoogle Scholar
  122. [115]
    Lichtner, R. B., andNicolson, G. L., 1987, Effects of the pyrimido-pyrimidine derivative RX-RA 85 on metastatic tumor cell-vascular endothelial cell interactions.Clin. Expl. Metastasis,5 (3), 219–231.Google Scholar
  123. [116]
    Liotta, L. A., 1986, Tumor invasion and membranes. Role of the extracellular matrix.Cancer Res.,46, 1–7.PubMedGoogle Scholar
  124. [117]
    Liotta, L. A., Thorgeirsson, U. P., andGarbisa, S., 1982, Role of collagenases in tumor cell invasion.Cancer Metastasis Rev.,1, 277–288.PubMedGoogle Scholar
  125. [118]
    Liotta, L. A., Horan Hand, P., Rao, C. N., Bryant, G., Barsky, S. H., andSchlom, J., 1985, Monoclonal antibodies to the human laminin receptor recognize structurally distinct sites.Expl. Cell Res.,156, 117–126.Google Scholar
  126. [119]
    Mayhew, E., andGlaves, D., 1984, Quantitation of tumorigenic disseminating and arrested cancer cells.Br. J. Cancer,50, 159–166.PubMedGoogle Scholar
  127. [120]
    McCarthy, J., Palmard, S., andFurcht, L., 1983, Migration by hapotaxis of a Schwann cell tumor line to the basement membrane glycoprotein laminin.J. Cell Bio.,97, 772–779.Google Scholar
  128. [121]
    McCarthy, J. B., Basara, M. L., Palm, S. L., Sas, D. F., andFurcht, L. T., 1985, The role of cell adhesion proteins-laminin and fibronectin-in the movement of malignant and metastatic cells.Cancer Metastasis Rev.,4, 125–152.PubMedGoogle Scholar
  129. [122]
    McCarthy, J., Hagen, S. T., andFurcht, L. T., 1986, Fibronectin contains distinct adhesion and motility-promoting domains for metastatic melanoma cells.J. Cell Biol.,102, 179–188.PubMedGoogle Scholar
  130. [123]
    McKever, R. P., Bennett, E. M., andMartin, M. N., 1983, Identification of two structurally and functionally distinct sites on human platelet membrane glycoprotein IIb-IIIa using monoclonal antibodies.J. Biol. Chem.,258, 5269.PubMedGoogle Scholar
  131. [124]
    McMillan, T. J., Rao, J., andHart, I. R., 1986, Enhancement of experimental metastasis by pretreatment of tumor cells with hydroxyusea.Int. J. Cancer,38, 61–65.PubMedGoogle Scholar
  132. [125]
    Menter, D. G., Harkins, C., Onoda, J. M., Riorden, W., Sloane, B. F., Taylor, J. D., andHonn, K. V., 1987, Inhibition of tumor cell induced platelet aggregation by prostacyclin and carbacyclin: an ultrastructural study.Invasion Metastasis,7, 109–128.PubMedGoogle Scholar
  133. [126]
    Menter, D. G., Hatfield, J. S., Harkins, C. J., Sloane, B. F., Taylor, J. D., Crissman, J. D., andHonn, K. V., 1987, Tumor cell-platelet interactionsin vitro and their relationship toin vivo arrest of hematogenously circulating tumor cells.Clin. Expl. Metastasis,5, 65–78.Google Scholar
  134. [127]
    Menter, D. G., Sloane, B. F., Steinert, B. W., Onoda, J. M., Craig, R., Harkins, C., Taylor, J. D., andHonn, K. V., 1987, Platelet enhancement of tumor cell adhesion to subendothelial matrix. Role of platelet cytoskeleton and platelet membrane.J. Natl. Cancer Inst.,79, 1077–1098.PubMedGoogle Scholar
  135. [128]
    Menter, D. G., Steinert, B. W., Sloane, B. F., Gundlach, N., O'Gara, C. Y., Marnett, L. J., Diglio, C., Walz, D., Taylor, J. D., andHonn, K. V., 1987, Role of platelet membrane in enhancement of tumor cell adhesion to endothelial cell extracellular matrix.Cancer Res.,47, 6751–6762.PubMedGoogle Scholar
  136. [129]
    Meromsky, L., Lotan, R., andRaz, A., 1986, Implications of endogeneous tumor cell surface lectings as mediators of cellular interactions and lung colonization.Cancer Res.,46, 5270–5275.PubMedGoogle Scholar
  137. [130]
    Milas, L., Malenica, B., andAllergetti, N., 1979, Enhancement of artificial lung metastases in mice caused by cyclophosphamide. I. Participation of impairment of host antitumor resistance.Cancer Immunol. Immunother'. 6, 191–196.Google Scholar
  138. [131]
    Moore, A., Ross, G. D., andMachman, E., 1978, Interaction of platelet membrane receptors with von Willebrand factor, ristocetin, and the Fc region of immunoglobulin G.J. Clin. Invest.,62, 1053.PubMedGoogle Scholar
  139. [132]
    Moore, J. V., andDixon, B., 1977, Metastasis of a transplantable mammary tumour in rats treated with cyclophosphamide and/or irradiation.Br. J. Cancer,36, 221–226.PubMedGoogle Scholar
  140. [133]
    Morganroth, M. L., Till, G. O., Kunkel, R. G., andWard, P. A., 1986, Complement and neutrophil-mediated injury of perfused rat lungs.Lab. Invest.,54, 507–514.PubMedGoogle Scholar
  141. [134]
    Moscatelli, D., 1985, Collagenase and plasminogen activator production by bloodvessel associated cells in response to angiogenic preparations.Intracellular Protein Catabolism edited by E. A. Khairallah, J. S. Bond and J. W. C. Bird (New York: Liss), pp. 669–671.Google Scholar
  142. [135]
    Moscatelli, D., Presta, M., andRifkin, D. B., 1986, Purification of a factor from human placenta that stimulated capillary endothelial cell protease production, DNA synthesis and migration.Proc. Natl. Acad. Sci., USA,83, 2091–2095.Google Scholar
  143. [136]
    Muller, W. A., andGimbrone, M. A. Jr, 1986, Plasmalemmal proteins of cultured vascular endothelial cells exhibit apical-basal polarity: analysis by surface-selective iodination.J. Cell Biol.,103, 2389–2402.PubMedGoogle Scholar
  144. [137]
    Mundy, G. R., DeMartino, S., andRowe, D. W., 1981, Collagen and collagen-derived fragments and chemotactic for tumor cells.J. Clin. Invest.,68, 1102–1105.PubMedGoogle Scholar
  145. [138]
    Nakajima, M., Irimura, T., DiFerrante, D., DiFerrante, N., andNicolson, G. L., 1983, Heparan sulfate degradation: relation to tumor invasive and metastatic properties of mouse B16 melanoma sublines.Science,220, 611–613.PubMedGoogle Scholar
  146. [139]
    Nakajima, M., Irimura, T., andNicolson, G. L., 1986, Tumor metastasis-associated heparanase (heparan sulfate endoglycosidase) activity in human melanoma cells.Cancer Lett.,31, 277–283.PubMedGoogle Scholar
  147. [140]
    Nakajima, M., Welch, D. R., Belloni, P. N., andNicolson, G. L., 1987, Degradation of basement membrane type IV collagen and lung subendothelial matrix by rat mammary adenocarcinoma cell clones of differing metastatic potentials.Cancer Res.,47, 4869–4876.PubMedGoogle Scholar
  148. [141]
    Nicolson, G. L., 1982, Metastatic tumor cell attachment and invasion assay utilizing vascular endothelial cell monolayers.J. Histochem. Cytochem.,30, 214–220.PubMedGoogle Scholar
  149. [142]
    Nicolson, G. L., 1988, Cancer metastasis: Tumor cell and host organ properties important in metastasis to specific secondary sites.Biochim. Biophys. Acta (Cancer Rev.) (In press).Google Scholar
  150. [143]
    Nicolson, G. L., andCustead, S. E., 1985, Effects of chemotherapeutic drugs on platelet and metastatic tumor cell-endothelial cell interactions as a model for assessing vascular endothelial integrity.Cancer Res.,45, 331–336.PubMedGoogle Scholar
  151. [144]
    Nicolson, G. L., Irimura, T., Nakajima, M., Updyke, T. V., andPoste, G., 1984, The cellular interactions of metastatic tumor cells with special reference to endothelial cells and their basal lamina-like matrix.Hemostatic Mechanisms and Metastasis, edited by K. V. Honn and B. F. Sloane (Boston: Martinus Nijhoff), pp. 295–318.Google Scholar
  152. [145]
    Nicosia, R. F., andMadri, J. A., 1987, The microvascular extracellular matrix.Am. J. Pathol.,128, 78–90.PubMedGoogle Scholar
  153. [146]
    Niedbala, M. J., Madiyalakan, R., Matta, K., Crickard, K., Sharma, M., andBernacki, R. J., 1987, Role of glycosidases in human ovarian carcinoma cell mediated degradation of subendothelial extracellular matrix.Cancer Res.,47, 4634–4641.PubMedGoogle Scholar
  154. [147]
    Oberly, L. W., andBuettner, G. R., 1979, Role of Superoxide dismutase in cancer: a review.Cancer Res.,39, 1141–1149.PubMedGoogle Scholar
  155. [148]
    Okito, J. R., Pidard, D., Newman, P. J., Montgomery, R. R., andKunicki, T. J., 1985, On the association of glycoprotein Ib and actin-binding protein in human platelets.J. Cell Biol.,100, 317.PubMedGoogle Scholar
  156. [149]
    Olden, K., Humphries, M. J., andWhite, S. L., 1985, Biochemical effects and cancer therapeutic potential of tunicamycin.Monoclonal Antibodies and Cancer Therapy, edired by R. Riesfeld and S. Sell (New York: Alan R. Liss), pp. 443–472.Google Scholar
  157. [150]
    Onoda, J. M., Nelson, K. K., Grossi, I. M., Umbarger, L. A., Taylor, J. D., andHonn, K. V., 1988, Separation of high and low metastatic subpopulations from solid tumors by centrifugal elutriation.Proc. Soc. Exp. Biol. Med.,187, 250–255.PubMedGoogle Scholar
  158. [151]
    Orr, F. W., Phan, S. H., Varani, J., Ward, P. A., Kreutzer, D. L., Webster, R. D., andHenson, P. M., 1979, Chemotactic factor for tumor cells derived from the C5a fragment of complement component C5.Proc. Natl. Acad. Sci., USA,76, 1986–1989.Google Scholar
  159. [152]
    Orr, F. W., Mokashi, S., andDelikatny, J., 1982, Generation of a complement-derived chemotactic factor for tumor cells in experimentally induced peritoneal exudates and its effect on the local metastasis of circulating tumor cells.Am. J. Pathol.,108, 112–118.PubMedGoogle Scholar
  160. [153]
    Orr, F. W., andMokashi, S., 1985, Effect of leukocyte activation on the formation of heterotypic tumor-cell aggregatesin vitro.Int. J. Cancer,35, 101–106.PubMedGoogle Scholar
  161. [154]
    Orr, F. W., Adamson, I. Y. R., andYoung, L., 1985, Pulmonary inflammation generates chemotactic activity for tumor cells and promotes lung metastasis.Am. Rev. Respir.Dis.,131, 607–611.PubMedGoogle Scholar
  162. [155]
    Orr, F. W., Adamson, I. Y. R., andYoung, L., 1986, Promotion of pulmonary metastasis in mice by bleomycin-induced endothelial injury.Cancer Res.,46, 891–897.PubMedGoogle Scholar
  163. [156]
    Orr, F. W., andWarner, D. J. A., 1987, Effects of neutrophil-mediated pulmonary endothelial injury on the localization and metastasis of circulating Walker carcinosarcoma cells.Invasion Metastasis,7, 183–196.PubMedGoogle Scholar
  164. [157]
    Ossowski, L., 1988, Plasminogen-activator dependent pathways in the dissemination of human tumor cells in the chick embryo.Cell,52, 321–328.PubMedGoogle Scholar
  165. [158]
    Ostrowski, L. E., Ahsan, A., Suther, B. P., Pagast, P., Bain, D. L., Wong, C., Patal, A., andSchultz, R. M., 1986, Selective inhibition of proteolytic enzymes in anin vivo mouse model for experimental metastasis.Cancer Res.,46, 4121–4128.PubMedGoogle Scholar
  166. [159]
    Ozaki, T., Yoshida, K., Ushijima, K., andHayashi, H., 1971, Studies on the mechanisms of invasion in cancer. II.In vivo effects of a factor chemotactic for cancer cells.Int. J. Cancer,7, 93–100.PubMedGoogle Scholar
  167. [160]
    Paget, S., 1889, The disttibution of secondary growths in cancer of the breast.Lancet,i, 571–573.Google Scholar
  168. [161]
    Painter, R. G., andGinsberg, M., 1982, Concanavalin A induces interactions between surface glycoproteins and the platelet cytoskeleton.J. Cell Biol.,92, 565.PubMedGoogle Scholar
  169. [162]
    Palmblad, J., Malmsten, D., Uden, A. M., Radmark, O., Engsted, L., andSamuelsson, B., 1981, Leukotriene B4 is a potent and stereospecific stimulator of neutrophil chemotaxis and adherence.Blood,58, 658–661.PubMedGoogle Scholar
  170. [163]
    Pepin, J. M., andLanger, R. O. 1985, Effects of dimethyl sulfoxide (DMSO) on bleomycin-induced pulmonary fibrosis.Biochem. Pharmacol.,34, 2386–2389.PubMedGoogle Scholar
  171. [164]
    Peterson, D. M., Stathhopoulos, N. A., Georgio, D. D., Helums, J. D., andMoike, J. L., 1987, Shear-induced platelet aggregation requires von Willebrand factor and platelet membrane glycoproteins Ib and IIb–IIIa.Blood,69, 625.PubMedGoogle Scholar
  172. [165]
    Phillips, D. R., andAgin, P. P., 1977, Platelet plasma membrane glycoproteins. Evidence for the presence of nonequivalent disulfide bonds using nonreduced-reduced two-dimensional gel electrophoresis.J. Biol. Chem.,252, 21.Google Scholar
  173. [166]
    Phillips, D. R., andShuman, M. A., 1986,Biochemistry of Platelets (New York: Academic Press).Google Scholar
  174. [167]
    Pidard, D., Montgomery, R. R., Bennett, J. S., andKunicki, T. J., 1983, Interaction of AP-2, a monoclonal antibody specific for the human platelet membrane glycoprotein IIb–IIIa complex, with intact platelets.J. Biol. Chem.,258, 12582–12586.PubMedGoogle Scholar
  175. [168]
    Pober, J. S., Bevilacqua, M. P., Mendrick, D. L., Lapiere, L. A., Fiers, W., andGimbrone, M. A. Jr, 1986, Two distinct monocines, interleukin 1 and tumor necrosis factor, each independently induce biosynthesis and transient expression of the same antigen on the surface of cultured human vascular endothelial cells.J. Immunol.,136, 1680–1687.PubMedGoogle Scholar
  176. [169]
    Pober, J. S., Gimbrone, M. A. Jr, Lapierre, L. A., Mendrick, D. L., Fiers, W., Rothlein, R., andSpringer, T. A., 1986, Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon.J. Immunol.,137, 1893–1896.PubMedGoogle Scholar
  177. [170]
    Pober, J. S., Lapierre, L. A., Stolpen, A. H., Brock, T. A., Springer, T. A., Fiers, W., Bevilacqua, M. P., Mendrick, D. L., andGimbrone, M. A. Jr, 1987, Activation of cultured human endothelial cells by recombinant lymphotoxin: comparison with tumor necrosis factor and interleukin species.J. Immunol.,138, 3319–3324.PubMedGoogle Scholar
  178. [171]
    Polverini, P. J., andLeibovich, S. J., 1984, Induction of neovasculaturizationin vivo and endothelial proliferationin vitro by tumor-associated macrophages.Lab. Invest.,51, 635–642.PubMedGoogle Scholar
  179. [172]
    Poupon, M. F., Pauwels, C., Jasmin, C., Antoine, E., Lascaux, V., andRosa, B., 1984, Amplified pulmonary metastases of a rat rhabdomyosarcoma in response to nitrosourea treatment.Cancer Treat. Rep.,68, 749–758.PubMedGoogle Scholar
  180. [173]
    Pytela, R., Pierschbacher, M. D., andRuoslahti, E., 1985, Identification and isolation of a 140-Kd cell surface glycoprotein with properties expected of a fibronectin receptor.Cell,40, 191–198.PubMedGoogle Scholar
  181. [174]
    Pytela, R., Pierschbacher, M. D., andRuoslahti, E., 1985, A 125/115-kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin.Proc. Natl. Acad. Sci., USA,82, 5766–5770.Google Scholar
  182. [175]
    Rao, C. N., Margulies, I. M. K., Tralka, T. S., Terranova, V. P., Madri, J. A., andLiotta, L., 1982, Isolation of a subunit og laminin and its role in molecular structure and tumor cell attachment.J. Biol. Chem.,257, 9740–9744.PubMedGoogle Scholar
  183. [176]
    Rao, M. C., Barsky, S. H., Terranova, V. P., andLiotta, L., 1983, Isolation of a tumor cell laminin receptor.Biochem. Biophys. Res. Commun.,111, 804–808.PubMedGoogle Scholar
  184. [177]
    Raz, A., andBen-Ze'ev, A., 1987, Cell-contact and architecture of malignant cells and their relationship to metastasis.Cancer Metastasis Rev.,6, 3–21.PubMedGoogle Scholar
  185. [178]
    Rothlein, R., Dustin, M. L., Marlin, S. D., andSpringer, T. A., 1986, A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1.J. Immunol.,137, 1270–1274.PubMedGoogle Scholar
  186. [178a]
    Rozhin, J., Robinson, D., Stevens, M. A., Lah, T. T., Honn, K. V., Ryan, R. E., andSloane, B. F., 1987, Properties of a plasma membrane-associated cathepsin B-like cysteine proteinase in metastatic B16 melanoma variants.Cancer Res.,47, 6620–6628.PubMedGoogle Scholar
  187. [179]
    Ruoslahti, E., andPierschbacher, M. D., 1987, New perspectives in cell adhesion: RGD and intergrins.Science,238, 491–497.PubMedGoogle Scholar
  188. [180]
    Santoso, S., Zimmermann, U., Neppert, J., andMueller-Eckhardt, C., 1986, Receptor patching and capping of platelet membranes induced by monoclonal antibodies.Blood,67, 343–349.PubMedGoogle Scholar
  189. [181]
    Sato, H., andSuzuki, M., 1976, Deformability and viability of tumor cells by transcapillary passage with reference to organ affinity in metastasis in cancer.Fundamental Aspects of Metastasis, edited by L. Weiss (Amsterdam: North-Holland), pp. 311–317.Google Scholar
  190. [182]
    Schmid-Schonbein, G. W., 1986, Rheology of leukocytes.Handbook of Bioengineering, edited by R. Skalak and S. Chien (New York: Pergamon), chap. 13.Google Scholar
  191. [183]
    Schmid-Schonbein, G. W., 1987, Leukocyte kinetics in the microcirculation.Bioheology,24, 139–151.Google Scholar
  192. [184]
    Shah, S. V., Baricos, W. H., andBasci, A., 1987, Degradation of human glomerular basement by stimulated neutrophils. Activation of a metalloproteinase(s) by reactive oxygen metabolites.J. Clin. Invest.,79, 25–31.PubMedGoogle Scholar
  193. [185]
    Shoenfeld, Y., Tal, A., Berliner, S., andPinkhas, J., 1986, Leukocytosis in nonhematological malignancies-a possible tumor-associated marker.J. Cancer Res. Clin. Oncol.,111, 54–58.PubMedGoogle Scholar
  194. [186]
    Sindelar, W. F., Tralka, T. S., andKetcham, A. S., 1975, Electron microscopic observations on formation of pulmonary metastases.J. Surg. Res.,18, 137.PubMedGoogle Scholar
  195. [187]
    Sloane, B. F., andHonn, K. V., 1984, Cysteine proteinases and metastasis.Cancer Metastasis Rev.,3, 249–263.PubMedGoogle Scholar
  196. [187a]
    Sloane, B. F., Rozhin, J., Hatfield, J. S., Crissman, J. D., andHonn, K. V., 1987, Plasma membrane-associated cysteine proteinases in human and animal tumors.Exp. Cell Biol.,55, 209–224.PubMedGoogle Scholar
  197. [188]
    Sobel, M. E., Yamamoto, T., DeCrombrughe, B., andPastan, I., 1981, Regulation of procollagen messenger ribonculeic acid levels in Rous sarcoma virus transformed chick embryo fibroblasts.Biochemistry,20, 2678–2684.PubMedGoogle Scholar
  198. [189]
    Soberman, R. J., Harper, T. W., Betteridge, D., Lewis, R. A., andAusten, K. F., 1985, Characterization and separation of the arachidonic acid 5-lipoxygenase and linoleic acid W-6 lipoxgenase (arachidonic acid 15-lipoxygenase) of human polymor-phonuclear leukocytes.J. Biol. Chem.,260, 4508–4515.PubMedGoogle Scholar
  199. [190]
    Solum, N. A., andOlsen, T. M., 1984, Glycoprotein Ib in the Triton-insoluble (cytoskeletal) fraction of blood platelets.Biochem. Biophys. Acta,799, 209.PubMedGoogle Scholar
  200. [191]
    Sommer, A.,Brewer, M. T.,Thompson, R. C.,Moscatelli, D.,Presta, M., andRifkin, D. B., 1987/8, Primary structure of a human placental angiogenesis factor and cDNA sequence of a clone coding for a homologous protein from a human hepatoma cell line.Biochem. Biophys. Res. Commun. Google Scholar
  201. [192]
    Starkey, J. R., Liggitt, H. D., Jones, W., andHosick, H. L., 1984, Influence of migratory blood cells on the attachment of tumor cells to vascular endothelium.Int. J. Cancer,34, 535–543.PubMedGoogle Scholar
  202. [193]
    Steel, G. G., andAdams, K., 1977, Enhancement by cytotoxic agents of artificial pulmonary metastasis.Br. J. Cancer,36, 653–658.PubMedGoogle Scholar
  203. [194]
    Stewart, R. A. N., andHacker, M. P., 1984, Enhancement of B16 melanoma pulmonary colonization in mice following bleomycin in hyperoxia.Proc. Am. Assoc. Cancer Res.,25, 60.Google Scholar
  204. [195]
    Strauli, P., andWeiss, L., 1977, Cell locomotion and tumor penetration.Eur. J. Cancer,13, 1–12.PubMedGoogle Scholar
  205. [196]
    Suzuki, S., Argraves, W. S., Pytela, R., Arai, H., Krusius, T., Pierschbacher, M. D., andRouslahti, E., 1986, cDNA and amino acid sequences of the cell adhesion protein receptor recognizing vitronectin reveal a transmembrane domain and homologies with other adhesion protein receptors.Proc. Natl. Acad. Sci., USA,83, 8614–8618.Google Scholar
  206. [197]
    Tabilio, A., Rosa, J. P., Testa, U., Kieffer, N., Nurden, A. T., DelCanizo, M. C. J., Breton-Gorius, J., andVainchenken, W., 1984, Expression of platelet membrane glycoproteins and alpha-granule proteins by a human erythroleukemia cellline (HEL).Embo J.,3, 453–459.PubMedGoogle Scholar
  207. [198]
    Takahashi, M., Fujiwara, M., Kishi, K., Sakai, C., Sanada, C., Sanada, M., Moriyama, Y., andShibata, A., 1985, CSF producing all bladder cancer: case report and characteristics of the CSF produced by tumor cells.Int. J. Cell Cloning,3, 294–303.PubMedGoogle Scholar
  208. [199]
    Tanaka, N. G., Tohgo, A., andOgawa, H., 1986, Platelet-aggregation activities of metastasizing tumor cells. V.In situ roles of platelets in hematogeneous metastasis.Invasion Metastasis,6, 209–224.PubMedGoogle Scholar
  209. [200]
    Tao, T.-W., andJohnson, L. K., 1982, Altered adhesiveness of tumor cells surface variants with reduced metastasizing capacity-reduced adhesiveness to vascular wall components in culture.Int. J. Cancer,30, 763–766.PubMedGoogle Scholar
  210. [201]
    Terranova, V. P., Williams, J. E., andLiotta, L. A., 1984, Modulation of the metastatic activity of melanoma cells by laminin and fibronectin.Science,226, 982–985.PubMedGoogle Scholar
  211. [202]
    Thiagarajan, P., Shapiro, S., Swererlitsch, L., andMcCord, S., 1987, A human erythroleukemic cell line synthesizes a functionally active glycoprotein IIb/IIIa complex capable of binding fibrinogen.Biochem. Biophys. Acta,924, 127–134.PubMedGoogle Scholar
  212. [203]
    Thompson, W. D., Shiach, K. J., Fraser, R. A., McIntosh, L. C., andSimpson, J. G., 1987, Tumours acquire their vasculature by vessel incorporation, not vessel in growth.J. Pathol.,151, 323–332.PubMedGoogle Scholar
  213. [204]
    Thorgeirsson, U. P., Liotta, L. A., Kalebic, T., Margulies, I. M., Thomas, K., Rios-Candelore, M., andRusso, R. G., 1982, Effect of natural protease inhibitors and a chemoattractant on tumor cell invasionin vitro.J. Natl. Cancer Inst.,69, 1049–1054.PubMedGoogle Scholar
  214. [205]
    Till, G. O., Johnson, K. J., Kunkel, R., andWard, P. A., 1982, Intravascular activation of complement and acute lung injury.J. Clin. Invest.,69, 1126–1135.PubMedGoogle Scholar
  215. [206]
    Tohgo, A., Tanaka, N. G., andOgawa, H., 1986, Platelet aggregating activities of metastasizing tumor cells. IV. Effects of cell surface modification on thrombin generation, platelet aggregation and subsequent lung colonization.Invasion Metastasis,6, 58–68.PubMedGoogle Scholar
  216. [207]
    Turpeenniemi-Hujanen, T., Thorgeirsson, U. P., Hart, I. R., Grant, S. S., andLiotta, L. A., 1985, Expression of collagenase IV (basement membrane collagenase) activity in murine tumor cell hybrids that differ in metastatic potential.J. Natl. Cancer Inst.,75, 99–103.PubMedGoogle Scholar
  217. [208]
    Tuszynski, G. P., Tatiana, B. G., Rothman, V. L., Knudsen, K. A., andGasic, G. J., 1987, Thrombospondin. A potentiator of tumor cell metastasis.Cancer Res.,47, 4130–4133.PubMedGoogle Scholar
  218. [209]
    Tyagi, J. S., Hirano, H., Merlino, G. T., andPastan, I., 1983, Transcriptional control of the fibronectin gene in chick embryo fibroblasts transformed by Rous sarcoma virus.J. Biol. Chem.,258, 5787–5793.PubMedGoogle Scholar
  219. [210]
    Van den Brenk, H. A. S., Stone, M., Kelly, H., Orton, C., andSharpington, C., 1984, Promotion of growth of tumour cells in acutely inflammed tissues.Br. J. Cancer,30, 246–260.Google Scholar
  220. [211]
    Vaupel, P., andMuller-Klieser, W., 1983, Interstitieller Raum and Mikromilieu in malignen tumoren.Mikrozirk Forsch Klin, Vol. 2 (Basel: Karger).Google Scholar
  221. [212]
    VanPutten, L. M., Kram, K. L. J., Van Dierendonck, H. H. C., Smink, T., andFuzy, M., 1975, Enhancement by drugs of metastatic lung nodule formation after intravenous tumour cell injection.Int. J. Cancer,15, 588–595.PubMedGoogle Scholar
  222. [213]
    Varani, J., andFantone, J. C., 1982, Phorbol myristae acetate-induced adherence of Walker 256 carcinosarcoma cells.Cancer Res.,42, 190–197.PubMedGoogle Scholar
  223. [214]
    Varani, J., Dixit, V. M., Fligiel, S. E. G., McKeever, P. E., andCarey, T. E., 1986, Thrombospondin-induced attachment and spreading of human squamous carcinoma cells.Expl. Cell Res.,167, 376–390.Google Scholar
  224. [215]
    Vlodavsky, I., Atzmon, A. R., andFuks, Z., 1982, Tumor cell attachment to the vascular endothelium and subsequent degradation of the subendothelial extracellular matrix.Expl. Cell Res.,140, 149–159.Google Scholar
  225. [216]
    Vlodavsky, I., Fuks, Z., Bar-Ner, M., Ariav, Y., andSchirrmacher, V., 1983, Lymphoma cell-mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: relationship to tumor cell metastasis.Cancer Res.,43, 2704–2711.PubMedGoogle Scholar
  226. [217]
    Walther, H. E., 1948,Krebsmetastasen (Basel: Schwabe), pp. 296–297.Google Scholar
  227. [218]
    Warburton, M. J., Ferns, S. A., Kimbell, R., Rudland, P. S., Monoghand, P., andGusterson, B. A., 1987, Loss of basement membrane deposits and development of invasive potential by virally-transformed rat mammary cells are independent of collagenase production.Int. J. Cancer,40, 270–277.PubMedGoogle Scholar
  228. [219]
    Ward, P. M., andWeiss, L., 1985, Effects of single versus triple intravenous injections of B16 melanoma cells on the development of pulmonary tumors in mice.Int. J. Cancer,36, 519–521.PubMedGoogle Scholar
  229. [220]
    Warren, B. A., 1979, Tumor angiogenesis.Tumor Blood Circulation, edited by H.-I. Peterson (Boca Raton, FL: CRC Press), pp. 49–75.Google Scholar
  230. [221]
    Weiss, L., 1965, Studies on cell deformability. I. Effect of surface charge.J. Cell Biol.,26, 735–739.Google Scholar
  231. [222]
    Weiss, L., 1979, Dynamic aspects of cancer cell populations in metastasis.Am. J. Pathol.,97, 601–608.PubMedGoogle Scholar
  232. [223]
    Weiss, L., 1980, Cancer cell traffic from the lungs to the liver: an example of metastatic inefficiency.Int. J. Cancer,25, 385–392.PubMedGoogle Scholar
  233. [224]
    Weiss, L., 1985,Principles of Metastasis (Orlando, FL: Academic Press), pp. 3–9.Google Scholar
  234. [225]
    Weiss, L., 1985,Principles of Metastasis, (Orlando: Academic Press), pp. 134–159.Google Scholar
  235. [226]
    Weiss, L., 1985,Principles of Metastasis, (Orlando, FL: Academic press), pp. 162.Google Scholar
  236. [227]
    Weiss, L., 1986, A critical overview of the metastatic porcess.Mechanisms of Cancer Metastasis: Potential Therapeutic Implications, edited by K. V. Honn, W. E. Powers and B. F. Sloane (Boston, MA: Martinus Nijhoff), pp. 23–40.Google Scholar
  237. [228]
    Weiss, L., 1986, Metastatic inefficiency: causes and consequences.Cancer Rev.,3, 1–24.Google Scholar
  238. [229]
    Weiss, L., 1987, The hemodynamic destruction of circulating cancer cells.Biorheology,24, 105–115.PubMedGoogle Scholar
  239. [230]
    Weiss, L., 1988, Biomechanical destruction of cancer cells in the heart: a rateregulator for hematogenous metastasis.Invasion Metastasis,8, 228–237.PubMedGoogle Scholar
  240. [231]
    Weiss, L., 1988, Biomechanical destruction of cancer cells in the skeletal muscle: a rate-regulator for hematogenous metastasis.Clin. Expl. Metastasis (In press).Google Scholar
  241. [232]
    Weiss, L., andClement, K., 1969, Studies on cell deformability: some rheological considerations.Expl. Cell. Res.,58, 379–387.Google Scholar
  242. [233]
    Weiss, L., andDimitrov, D. S., 1984, A fluid mechanical analysis of the velocity, adhesion and destruction of cancer cells in capillaries during metastasis.Cell Biophys,6, 9–22.PubMedGoogle Scholar
  243. [234]
    Weiss, L., andDimitrov, D. S., 1986, Mechanical aspects of the lungs as cancer cellkilling organs during hematogenous metastasis.J. Theor. Biol.,121, 307–321.PubMedGoogle Scholar
  244. [235]
    Weiss. L., Dimitrov, D. S., andAngelova, M., 1985, The hemodynamic destruction of intravascular cancer cells in relation to myocardial metastasis.Proc. Natl. Acad. Sci., USA,82, 5737–5741.Google Scholar
  245. [236]
    Weiss, L., andGlaves, D., 1983, Cancer cell damage at the vascular endothelium.Ann. NY Acad. Sci.,416, 681–692.PubMedGoogle Scholar
  246. [237]
    Weiss, L., Grundmann, E., Torhorst, J., Hartveit, F., Moberg, I., Eder, M., Fenoglio-Preiser, C. M., Napier, J., Horne, C. H. W., Lopez, M. J., Shaw-Dunn, R. I., Sugar, J., Davies, J. D., Day, D. W., andHarlos, J. P., 1986, Hematogenous metastatic patterns in colonic carcinoma: an analysis of 1541 necropsies.J. Pathol.,150, 195–203.PubMedGoogle Scholar
  247. [238]
    Weiss, L., andHarlos, J. P., 1972, Some speculations on the rate of adhesion of cells to coverslips.J. Theor. Biol.,37, 169–179.PubMedGoogle Scholar
  248. [239]
    Weiss, L., andHarlos, J. P., 1972, Short-term interactions between cell surfaces. Progr.Surface Sci.,1, 355–405.Google Scholar
  249. [240]
    Weiss, L., andHarlos, J. P., 1987, Unpublished data.Google Scholar
  250. [241]
    Weiss, L., Orr, F. W., andHonn, K. V., 1988, Interactions of cancer cells with the microvasculature during metastasis.FASEB J.,2, 12–21.PubMedGoogle Scholar
  251. [242]
    Weiss, L., andSuh, O. W., 1985, The quantitation of some aspects of invasionin vivo andin vitro.Basic Mechanisms and Clinical Tremtment of Tumor Metastasis, edited by M. Toriss and Y. Yoshida (New York: Academic Press), pp. 23–40.Google Scholar
  252. [243]
    Weiss, L., Ward, P. M., Harlos, J. P., andHolmes, J. C., 1984, Target organ patterns of tumors in mice following the arterial dissemination of B16 melanoma cells.Int. J. Cancer,33, 825–830.PubMedGoogle Scholar
  253. [244]
    Weiss, L., Ward, P. M., andHolmes, J. C., 1983, Liver to lung traffic of cancer cells.Int. J. Cancer,32, 79–83.PubMedGoogle Scholar
  254. [245]
    Weiss, L., Peppin, G., Ortiz, X., Ragsdale, C., andTest, S. T., 1985, Oxidative autoactivation of latent collagenase by human neutrophils.Science,227, 747–749.PubMedGoogle Scholar
  255. [246]
    Wencel-Drake, J. D., Plow, E. F., Kunicki, T. J., Woods, V. L., Keller, D. M., andGinsberg, M. H., 1986, Localization of internal pools of membrane glycoproteins involved in platelet adhesive responses.Am. J. Pathol.,124, 324–334.PubMedGoogle Scholar
  256. [247]
    Willis, R. A., 1952,The Spread of Tumours in the Human Body (London: Butterworth), pp. 284–285.Google Scholar
  257. [248]
    Wood, S., 1958, Pathogenesis of metastasis formation observedin vivo in the rabbit ear chamber.Arch. Pathol.,66, 550–568.Google Scholar
  258. [249]
    Woods, D. L. Jr, Wolff, L. E., andKeller, D. M., 1986, Restins platelets contain a substantial centrally located pool of glycoprotein IIb–IIIa complex which may be accessible to some but not other extracellular proteins.J. Biol Chem.,261, 15242.PubMedGoogle Scholar
  259. [250]
    Woolley, D. E., 1984, Collagenolytic mechanisms in tumor cell invasion.Cancer Metastasis Rev.,3, 361–372.PubMedGoogle Scholar
  260. [251]
    Woolley, D. E., 1984, Proteolytic enzymes of invasive cells.Invasion. Experimental and Clinical Implications, edited by M. M. Mareel and K. C. Calman (Oxford: Oxford University Press), pp. 228–251.Google Scholar
  261. [252]
    Yogeeswaran, G., 1983, Cell surface glycolipids and glycoproteins in malignant transformation.Adv. Cancer Res.,38, 289–350.PubMedGoogle Scholar
  262. [253]
    Zeidman, I., 1961, The fate of circulating cancer cells. I. Passage of cells through capillaries.Cancer Res.,121, 38–39.Google Scholar
  263. [254]
    Zeidman, I., andBuss, J. M., 1952, Transpulmonary passage of tumor cell emboli.Cancer Res.,12, 731–733.PubMedGoogle Scholar
  264. [255]
    Zucker, S., Lysik, R. M., Ramamurthy, N. S., Golub, L. M., Wieman, J. M., andWilkie, D. P., 1985, Diversity of melanoma plasma membrane proteinases: inhibition of collagenolytic and cytolytic activities by minocycline.J. Natl. Cancer Inst.,75, 517–525.Google Scholar
  265. [256]
    Zucker, S., Lysik, R. M., Wieman, J., Wilkie, D. P., andLane, B., 1985, Diversity of human pancreatic cancer cell proteinases: role of cell membrane metalloproteinases in collagenolysis and cytolysis.Cancer Res.,45, 6168–6178.PubMedGoogle Scholar

Copyright information

© Taylor & Francis Ltd 1989

Authors and Affiliations

  • Leonard Weiss
    • 1
  • F. William Orr
    • 2
  • Kenneth V. Honn
    • 3
    • 4
  1. 1.Department of Experimental PathologyRoswell Park, Memorial InstituteBuffaloUSA
  2. 2.Department of PathologyMcMaster UniversityHamiltonCanada
  3. 3.Department of Radiation OncologyWayne State UniversityDetroitUSA
  4. 4.Gershenson Radiation Oncology CenterHarper/Grace HospitalsDetroitUSA

Personalised recommendations