Clinical & Experimental Metastasis

, Volume 3, Issue 3, pp 151–188 | Cite as

Implications of tumor progression on clinical oncology

  • Danny R. Welch
  • S. P. Tomasovic
Review

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Amici, C. C., Ferrantini, M., Benedetto, A., Belardelli, F., andGresser, I., 1984, Biologic and biochemical differences betweenin vitro andin vivo passaged Friend erythroleukemia cells. II. Changes in cell surface glycoproteins associated with a highly malignant phenotype.International Journal of Cancer,34, 397–402.Google Scholar
  2. [2]
    Barnett, S. C., andEccles, S.A., 1984, Studies of mammary carcinoma metastasis in a mouse model system. I. Derivation and characterization of cells with different metastatic properties during tumor progressionin vivo.Clinical and Experimental Metastasis,2, 15–36.PubMedGoogle Scholar
  3. [3]
    Batson, O. V. The function of the vertebral veins and their role in the spread of metastases.Annals of Surgery,112, 138–149.Google Scholar
  4. [4]
    Beatson, G. T., 1896, On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment with illustrative cases.Transactions of the Medico-Chirurgial Society Edinburgh, 1895–6 n.s.15, 153–179.Google Scholar
  5. [5]
    Belardelli, Ferrantini, M., Maury, C., Santurbano, L., andGresser, I., 1984, Biologic and biochemical differences betweenin vitro andin vivo passaged Friend erythroleukemia cells. I. Tumorigenicity and capacity to metastasize.International Journal of Cancer,34, 389–395.Google Scholar
  6. [6]
    Bissell, M. J., Hall, H. G., andParry, G., 1982, How does the extracellular matrix direct gene expression?Journal of Theoretical Biology,99, 31–68.PubMedGoogle Scholar
  7. [7]
    Bogden, A. E., Kelton, D. E., Cobb, W. R., Gulken, T. A., andJohnson, R. K., 1978, Effect of serial passage in nude athymic mice in the growth characteristics and chemotherapy responsiveness of 13762 and R3230AC mammary tumor xenografts.Cancer Research,38, 59–64.PubMedGoogle Scholar
  8. [8]
    Boveri, T., 1914,Zur Frage der Entstehung maligner Tumoren, edited by G. Jena (Stuttgart: Fisher Verlag).Google Scholar
  9. [9]
    Boyd, A. W., andSchrader, A., 1982, Derivation of macrophage-like lines from the pre-B lymphoma ABLS8.1 using 5-azacytidine.Nature,297, 691–693.PubMedGoogle Scholar
  10. [10]
    Brouty-Boye, D., Gresser, I., andBandu, M. T., 1982, Stability of the phenotypic reversion of X-ray transformed C3H/10T1/2 cells depends on cellular proliferation after subcultivation at low cell density.Carcinogenesis,3, 1057–1061.PubMedGoogle Scholar
  11. [11]
    Bruessow, S. C., Paul, R. D., andLopez, D. M., 1984, Influence of mammary tumor progression on phenotype and function of spleen andin situ lymphocytes in mice.Journal of the National Cancer Institute,73, 249–255.PubMedGoogle Scholar
  12. [12]
    Brunson, K. W., Beattie, G., andNicolson, G. L., 1978, Selection and altered tumour cell properties of brain-colonizing metastatic melanoma.Nature,272, 543–545.PubMedGoogle Scholar
  13. [13]
    Brunson, K. W., andNicolson, G. L., 1978, Selection and biologic properties of malignant variants of a murine lymphosarcoma.Journal of the National Cancer Institute,61, 1499–1503.PubMedGoogle Scholar
  14. [14]
    Brunson, K. W., andNicolson, G. L., 1979, Selection of malignant melanoma variant cell lines for ovary colonization.Journal of Supramolecular Structure,11, 517–528.PubMedGoogle Scholar
  15. [15]
    Callahan, G. N., 1984, Soluble factors distinct from gamma interferon regulate MHC antigen expression by murine tumor cells.Federation Proceedings,43, 1970.Google Scholar
  16. [16]
    Carr, B. I., Reilly, J. G., Smith, S. S., Winberg, C., andRiggs, A., 1984, The tumorgenicity of 5-azacytidine in the male Fischer rat.Carcinogenesis,5, 1583–1590.PubMedGoogle Scholar
  17. [17]
    Ceriani, R. L., Peterson, J. A., andBlank, E. W., 1984, Variability in surface antigen expression of human breast epithelial cells cultured from normal breast, normal tissue peripheral to breast carcinomas, and breast carcinomas.Cancer Research,44, 3033–3039.PubMedGoogle Scholar
  18. [18]
    Chow, D. A., 1984, Variant generation and selection: Anin vitro model of tumor progression.International Journal of Cancer,33, 541–545.Google Scholar
  19. [19]
    Chow, D. A., andGreenberg, A. H., 1980, Generation of tumor heterogeneityin vivo.International Journal of Cancer,25, 261–266.Google Scholar
  20. [20]
    Chow, D. A., Ray, M., andGreenberg, A. H., 1983,In vivo generation and selection of variants with altered sensitivity to natural resistance (NR): A model of tumor progression.International Journal of Cancer,31, 99–105.Google Scholar
  21. [21]
    Cifone, M. A., andFidler, I. J., 1981, Increasing metastatic potential is associated with increasing genetic instability of clones isolated from murine neoplasms.Proceedings of the National Academy of Sciences U.S.A.,78, 6949–6952.Google Scholar
  22. [22]
    Correll, L. L., Nielsen, L. D., Kelleher, P. J., Harbell, J. W., andMinden, P., 1983, Enhanced immunogenicity of line 10 guinea pig hepatocarcinoma cells after culture.Journal of the National Cancer Institute,71, 1343–1346.PubMedGoogle Scholar
  23. [23]
    Darbre, P., andKing, R. J. B., 1984, Progression to steroid autonomy in S115 mouse mammary tumor cells: role of DNA methylation.Journal of Cellular Biology,99, 1410–1415.Google Scholar
  24. [24]
    De Baetselier, P., Gorelick, E., Eshhar, Z., Ron, Y., Katzaf, S., Feldman, M., andSegal, S., 1981, Metastatic properties conferred on nonmetastatic tumors by hybridization of spleen B-lymphocytes with plasmacytoma cells.Journal of the National Cancer Institute,67, 1079–1087.PubMedGoogle Scholar
  25. [25]
    De Baetselier, P., Roos, E., Brys, L., Remels, L., andFeldman, M., 1984, Generation of invasive and metastatic variants of a non-metastatic T-cell lymphoma byin vivo fusion with normal host cells.International Journal of Cancer,34, 731–738.Google Scholar
  26. [26]
    De Baetselier, P., Roos, P., Brys, L., Remels, L., Gobert, M., Dekegel, D., Segal, S., andFeldman, M., 1984, Nonmetastatic tumor cells acquire metastatic properties following somatic hybridization with normal cells.Cancer Metastasis Reviews,3, 5–24.PubMedGoogle Scholar
  27. [27]
    De Bruyn, W. M., andGey, G. O., 1952, Further studiesin vitro of transplantable mouse lymphosarcoma MB (T86157).Acta Universitatis Internationalis Contra Cancrum,7, 722–775.Google Scholar
  28. [28]
    Dennis, J. W., Donaghue, T. P., Carlow, D. A., andKerbel, R. S., 1981, Demonstration of a correlation between tumor cell H-2 antigen content, immunogenicity, and tumorigenicity using lectin-resistant tumor variants.Cancer Research,41, 4010–4019.PubMedGoogle Scholar
  29. [29]
    Dennis, J., Donaghue, T., Florian, M., andKerbel, R. S., 1981, Apparent reversion of stablein vitro genetic markers detected in tumor cells from spontaneous metastasis.Nature,292, 242–245.PubMedGoogle Scholar
  30. [30]
    Dennis, J. W., Donaghue, T. P., andKerbel, R. S., 1981, An examination of tumor antigen loss in spontaneous metastasis.Invasion and Metastasis,1, 111–125.Google Scholar
  31. [31]
    Depadt, G., Delacroix, R., Meurette, J., andAdenis, L., 1985, Surgical treatment of pulmonary metastases: 68 cases.Treatment of Metastasis: Problems and Prospects, edited by K. Hellmann and S. A. Eccles (London, Philadelphia: Taylor & Francis), pp. 5–8.Google Scholar
  32. [32]
    Di Renzo, M. F., Doneda, L., Larizza, L., andComoglio, P. M., 1983, Metastatic clones selected from an RSV induced mouse sarcoma share a common marker chromosome.International Journal of Cancer,31, 455–461.Google Scholar
  33. [33]
    Doci, R., Bignami, P., Bozzetti, F., andGennari, L., 1985, Surgical treatment of hepatic metastases.Treatment of Metastasis: Problems and Prospects, edited by K. Hellmann and S. A. Eccles, (London, Philadelphia: Taylor & Francis), pp. 9–12.Google Scholar
  34. [34]
    Dunnington, D. J., Kim, U., Hughes, C. M., Monaghan, P., andRudland, P. S., 1984, Lack of production of myoepithelial variants by cloned epithelial cell lines derived from the TMT-081 metastasizing rat mammary tumor.Cancer Research,44, 5338–5436.PubMedGoogle Scholar
  35. [35]
    Dzarlieva, R., Schirrmacher, V., andFusenig, N. F., 1982, Cytogenetic changes during tumor progression towards invasion, metastases and immune escape in the Eb/ESb model system.International Journal of Cancer,30, 633–642.Google Scholar
  36. [36]
    Elmore, E., Kakunaga, T., andBarrett, J. C., 1983, Comparison of spontaneous mutation rates of normal and chemically transformed human skin fibroblasts.Cancer Research,43, 1650–1655.PubMedGoogle Scholar
  37. [37]
    Ershler, W. B., Hacker, M. P., Tindle, B. H., Stewart, J. A., Yates, J. W., andMoore, A.L., 1983, B16 Murine melanoma and aging: Age related growth patterns and survival after different results of implantation.Proceedings of the American Association of Cancer Research,24, 30.Google Scholar
  38. [38]
    Farber, E., 1984, The malignant phenotype as a late expression of the carcinogenic process.Journal of Cellular Physiology,316, Suppl. 3, 123–125.Google Scholar
  39. [39]
    Farber, E., 1984, The multistep nature of cancer development.Cancer Research,44, 4217–4223.PubMedGoogle Scholar
  40. [40]
    Feinberg, A., andVogelstein, B., Hypomethylation distinguishes genes of some human cancers from their normal counterparts.Nature,301, 89–92.Google Scholar
  41. [41]
    Fialkow, P. J., 1976, Clonal origin of human tumors.Biochimica et Biophysica Acta,458, 283–290.PubMedGoogle Scholar
  42. [42]
    Fialkow, P. J., 1979, Clonal organ of human tumors.Annual Reviews in Medicine,30, 135–176.Google Scholar
  43. [43]
    Fidler, I. J., 1970, Quantitative analysis of distribution and fate of tumor emboli labeled with [125I]-5-iodo-2′ deoxyuridine.Journalof the National Cancer Institute,45, 773–782.Google Scholar
  44. [44]
    Fidler, I. J., 1973, Selection of successive tumor lines for metastasis.Nature New Biology,242, 148–149.PubMedGoogle Scholar
  45. [45]
    Fidler, I. J., andHart, I. R., 1981, Biological and experimental consequences of the zonal composition of solid tumors.Cancer Research,41, 3266–3267.PubMedGoogle Scholar
  46. [46]
    Fidler, I. J., andHart, I. R., 1981, The origin of metastatic heterogeneity in tumors.European Journal of Cancer,17, 487–494.PubMedGoogle Scholar
  47. [47]
    Fidler, I. J., andWhite, R. J., (editors), 1982,Design of Models for Testing Cancer Therapeutic Agents (New York: Van Nostrand).Google Scholar
  48. [48]
    Foley, G. E., andDrolet, B. P., 1964, Loss of neoplastic propertiesin vitro: observation with S180 cell line.Cancer Research,24, 1461–1467.PubMedGoogle Scholar
  49. [49]
    Folkman, J., 1984, What is the role of endothelial cells in angiogenesis?Laboratory Investigation,51, 601–604.PubMedGoogle Scholar
  50. [50]
    Foulds, L., 1949, Mammary tumors in hybrid mice: growth and progression of spontaneous tumors.British Journal of Cancer,3, 345–375.PubMedGoogle Scholar
  51. [51]
    Foulds, L., 1954, Tumor progression: a review.Cancer Research,14, 327–339.PubMedGoogle Scholar
  52. [52]
    Foulds, L., 1956, The histologic analysis of mammary tumors of mice.Journal of the National Cancer Institute,171, 701–754.Google Scholar
  53. [53]
    Foulds, L., 1958, The natural history of cancer.Journal of Chronic Diseases,8, 2–18.PubMedGoogle Scholar
  54. [54]
    Foulds, L., 1975,Neoplastic Development (New York: Academic Press).Google Scholar
  55. [55]
    Frost, P., andKerbel, R. S., 1983, On the possible epigenetic mechanism(s) or tumor cell heterogeneity.Cancer Metastasis Reviews,2, 375–378.PubMedGoogle Scholar
  56. [56]
    Frost, P., Liteplo, R. G., Donaghue, T. P., andKerbel, R. S., 1984, The selection of strongly immunogenic ‘tum-’. Variants from tumors at high frequency using 5-azacytidine.Journal of Experimental Medicine,149, 1491–1501.Google Scholar
  57. [57]
    Fulton, A. M., Loveless, S. E., andHeppner, G. H., 1984, Mutagenic activity of tumor-associated macrophages inSalmonella typhimurium strainsTA79 andTA100 Cancer Research,44, 4308–4311.PubMedGoogle Scholar
  58. [58]
    Goldberg, S., andDefendi, V., 1979, Increased mutation rates in double viral transformed Chinese hamster cells.Somatic Cell Genetics,5, 887–895.PubMedGoogle Scholar
  59. [59]
    Goldenberg, D. M., Pavia, R. A., andTsao, M. C., 1974,In vivo hybridization of human tumor and normal hamster cells.Nature,250, 649–651.PubMedGoogle Scholar
  60. [60]
    Goldie, J. H., 1983, Drug resistance and cancer chemotherapy strategy in breast cancer.Breast Cancer Research and Treatment,3, 129–136.PubMedGoogle Scholar
  61. [61]
    Goldie, J. H., andColdman, A. J., 1984, The genetic origin of drug resistance in neoplasms: Implications for systemic therapy.Cancer Research,44, 3643–3653.PubMedGoogle Scholar
  62. [62]
    Goldsmith, J. C., McCormick, J. I., andYen, A., 1984, Endothelial cell cycle kinetics: Changes in culture and correlation with endothelial properties.Laboratory Investigation,51, 643–647.PubMedGoogle Scholar
  63. [63]
    Gorczynski, R. M., Kennedy, M., Polidoulis, I., andPrice, G. B., 1984, Altered tumor growthin vivo after immunization of mice with antitumor antibodies.Cancer Research1,44, 3291–3298.PubMedGoogle Scholar
  64. [64]
    Greig, R. G., Caltabiano, L., Reid, R., Feild, J., andPoste, G., 1983, Heterogeneity of protein phosphorylation in metastatic variants of B16 melanoma.Cancer Research,43, 6057–6065.PubMedGoogle Scholar
  65. [65]
    Greig, R. G.,Reid, R.,Coyle, J.,Caltabiano, L.,Feild, J.,Koestler, T. P., andPoste, G., 1985, Induction of heat shock (stress) proteins and enhancement of metastatic potential in B16 melanoma cells (in the press).Google Scholar
  66. [66]
    Griffin, J. E., Allman, D. R., Durrant, J. L., andWilson, J. D., 1981, Variation in steroid 5α-reductase activity in cloned human skin fibroblasts.Journal of Biological Chemistry,256, 3662–3666.PubMedGoogle Scholar
  67. [67]
    Hager, J. C., Fligiel, S., Stanley, W., Richardson, A. M., andHeppner, G. H., 1981, Characterization of a variant-producing tumor cell line from a heterogeneous strain BALB/cfC3H mouse mammary tumor.Cancer Research,41, 1293–1300.PubMedGoogle Scholar
  68. [68]
    Hall, E. J. (editor), 1978,Radiobiology for the Radiobiologist, 2nd edition, (New York: Harper & Row).Google Scholar
  69. [69]
    Hand, P. H., Nuti, M., Cochler, D., andSchlom, J., 1983, Definition of antigenic heterogeneity and modulation among human mammary carcinomas: cell populations using monoclonal antibodies to tumor associated antigens.Cancer Research,43, 728–735.PubMedGoogle Scholar
  70. [70]
    Harris, J. F., Chambers, A. F., Hill, R. P., andLing, V., 1982, Metastatic variants are generated spontaneously at high rate in mouse KHT tumor.Proceedings of the National Academy of Sciences, U.S.A.,79, 5547–5551.Google Scholar
  71. [71]
    Harris, M., 1973, Phenotypic expression of drug resistance in hybrid cells.Journal of the National Cancer Institute,50, 423–429.PubMedGoogle Scholar
  72. [72]
    Harris, M., 1974, Comparative frequency of dominant and recessive markers for drug resistance in Chinese hamster cells.Journal of the National Cancer Institute,52, 1811–1816.PubMedGoogle Scholar
  73. [73]
    Haveman, J., Jansen, W., Vander Scheuren, E., Breur, K., 1981, Radiosensitivity of microscopic tumors of a transplantable mammary adenocarcinoma in mice.British Journal of Cancer,43, 864–870.PubMedGoogle Scholar
  74. [74]
    Heppner, G. H., 1984, Tumor heterogeneity,Cancer Research,44, 2259–2265.PubMedGoogle Scholar
  75. [75]
    Heppner, G. H., Loveless, S. E., Miller, F. R., Mahoney, K. H., andFulton, A. M., 1984, Mammary tumor heterogeneity.Cancer Invasion and Metastasis: Biologic and Therapeutic Aspects, edited by G. L. Nicolson and L. Milas (New York: Raven Press), pp. 209–221.Google Scholar
  76. [76]
    Heppner, G. H., andMiller, B. E., 1983, Tumor heterogeneity: biological implications and therapeutic consequences.Cancer Metastasis Reviews,2, 5–23.PubMedGoogle Scholar
  77. [77]
    Hilgard, P., andHellmann, K., 1984, Invasion and metastases as targets for tumour therapy. An overview.Development and Oncology,15, 33–41.Google Scholar
  78. [78]
    Hill, H. Z., Hill, G. J., Miller, C. F., Kwong, F., andPurdy, J., 1979, Radiation and melanoma: response of B16 mouse tumor cells and clonal lines toin vitro irradiation.Radiation Research,80, 259–276.PubMedGoogle Scholar
  79. [79]
    Holliday, R., 1979, A new theory of carcinogenesis.British Journal of Cancer,40, 513–522.PubMedGoogle Scholar
  80. [80]
    Hoon, D.B., Wang, H.-C., andRamshaw, I.A., 1984, Increased metastatic ability and bone formation of a mammary adenocarcinomain vivo andin vitro passaging.European Journal of Cancer and Clinical Oncology,20, 1517–1526.Google Scholar
  81. [81]
    Howell, A. L., andRichie, E. R., 1984, Phenotypic drift and clonal variation in differentiation antigen expression on AKR T-cell lymphoma lines grownin vitro.Natural Immunity, Cell Growth and Regulation,3, 143–154.Google Scholar
  82. [82]
    Hsu, T. C., 1960, Mammalian chromosomesin vitro. XII. Experimental evolution of cell populations.Journal of the National Cancer Institute,24, 1067–1093.PubMedGoogle Scholar
  83. [83]
    Hsu, T. C., andKlatt, O., 1959, Mammalian chromosomesin vitro. X. Heteroploid transformation in neoplastic cells.Journal of the National Cancer Institute,22, 313–339.PubMedGoogle Scholar
  84. [84]
    Hu, F., andPasztor, L. M., 1975,In vivo hybridization of cultured melanoma cells and isogenic normal mouse cells.Differentiation,4, 92–97.Google Scholar
  85. [85]
    Isaacs, J. T., 1982, Genetic instability and tumor progression.Cancer: Etiology and Prevention, Proceedings of Chicago Symposium, edited by R. G. Crispen (New York: Elsevier), pp. 79–90.Google Scholar
  86. [86]
    Isaacs, J. T., Wake, H., Coffey, D. S., andSandberg, A. A., 1982, Genetic instability coupled to clonal selection as a mechanism for tumor progression in the Dunning R-3327 rat prostatic adenocarcinoma system.Cancer Research,42, 2353–2371.PubMedGoogle Scholar
  87. [87]
    Jamasbi, R. J., andNettesheim, P., 1977, Increase in immunogenicity of a pulmonary squamous-cell carcinoma propagatedin vitro.International Journal of Cancer,20, 817–823.Google Scholar
  88. [88]
    Jamasbi, R. J., andNettesheim, P., 1979, Increase in immunogenicity with concomitant loss of tumorigenicity of respiratory tract carcinomas duringin vitro culture.Cancer Research,39, 2466–2470.PubMedGoogle Scholar
  89. [89]
    Jones, P. A., andTaylor, S. M., 1980, Cellular differentiation, cytidine analogs and DNA methylation.Cell,20, 85–93.PubMedGoogle Scholar
  90. [90]
    Kastan, M. B., Gowans, B. J., andLieberman, M. W., 1982, Methylation of deoxycytidine incorporated by excision-repair synthesis of DNA.Cell,30, 509–516.PubMedGoogle Scholar
  91. [91]
    Keil-Dlouha, V., andDarmon, M., 1983, Changes in pattern and accessibility for125I-labelling of cell-surface proteins after mesenchymal differentiation of embryonal carcinoma cells.Biochimica et Biophysica Acta,734, 249–256.PubMedGoogle Scholar
  92. [92]
    Kerbel, R. S., Frost, P., Liteplo, R., Carlow, D. A., andElliott, B. E., 1984, Possible epigenetic mechanisms of tumor progression: induction of high-frequency heritable but phenotypically unstable changes in the tumorigenic and metastatic properties of tumor cell populations by 5-azacytidine treatment.Journal of Cellular Physiology,316, 87–98.Google Scholar
  93. [93]
    Kerbel, R. S., Lagarde, A. E., Dennis, J. W., andDonaghue, T. P., 1983, Spontaneous fusionin vivo between normal host and tumor cells: Possible contribution to tumor progression and metastasis studied with lectin resistant mutant tumor.Molecular and Cellular Biology,3, 523–538.PubMedGoogle Scholar
  94. [94]
    Kiang, D. T., King, M., Zhang, H.-J., Kennedy, B. J., andWang, N., 1982, Cyclic biological expression in mouse mammary tumors.Science,216, 68–70.PubMedGoogle Scholar
  95. [95]
    Klein, B. Y., Frenkel, S., Ahitiiv, A., andNaor, D., 1980, Immunogenicity of subcellular fractions and molecular species of MuLV-induced tumors. I. Screening of immunogenic components by isopycnic ultracentrifugation and polyacrylamide electrophoresis of a tumor homogenate.Journal of Immunological Methods,38, 325–341.PubMedGoogle Scholar
  96. [96]
    Kleinman, H. K., Klebe, R. J., andMartin, G. R., 1981, Role of collagenous matrices in the adhesion and growth of cells.Journal of Cell Biology,88, 473–485.PubMedGoogle Scholar
  97. [97]
    Kreider, J. W., Bartlett, G. L., andButkiewicz, B. L., 1984, Relationship of tumor leucocytic infiltration to host defense mechanisms and prognosis.Cancer Metastasis Reviews,3, 53–74.PubMedGoogle Scholar
  98. [98]
    Kyle, R. A., 1982, Second malignancies associated with chemotherapeutic agents.Seminars in Oncology,9, 135–142.Google Scholar
  99. [99]
    Lagarde, A. E., 1983, Afluctuation analysis of the rate of reexpression of the metastatic potential in a nonmetastatic mutant of the MDAY-D2 murine tumor.Invasion and Metastasis,3, 52–64.Google Scholar
  100. [100]
    Lagarde, A. E., Donaghue, T. P., Kerbel, R. S., andSiminovitch, L., 1984, Metastatic properties of distinct phenotypic classes of lectin-resistant mutants isolated from murine MDAY-D2 cell line.Somatic Cell and Molecular Genetics,10, 503–519.PubMedGoogle Scholar
  101. [101]
    Larizza, L., andSchirrmacher, V., 1984, Somatic cell fusion as a source of genetic rearrangement leading to metastatic variants.Cancer Metastasis Reviews,3, 193–222.PubMedGoogle Scholar
  102. [102]
    Larizza, L., Schirrmacher, V., Graf, L., Pfluger, E., Peres-Martinez, M., andStohr, M., 1984, Suggestive evidence that the highly metastatic variant ESb of the T-cell lymphoma Eb is derived from spontaneous fusion with a host macrophage.International Journal of Cancer,34, 699–707.Google Scholar
  103. [103]
    Larizza, L., Schirrmacher, V., andPfluger, E., 1984, Acquisition of high metastatic capacity afterin vitro fusion of a non-metastatic tumor line with a bone marrow-derived macrophage.Journal of Experimental Medicine,160, 1579–1584.PubMedGoogle Scholar
  104. [104]
    Larizza, L., Schirrmacher, V., Stohr, M., Pluger, E., andDzarlieva, R., 1984, Inheritance of immunogenicity and metastatic potential in murine cell hybrids from the T-lymphoma ESb08 and normal spleen lymphocytes.Journal of the National Cancer Institute,72, 1371–1381.PubMedGoogle Scholar
  105. [105]
    Leder, P., Battey, J., Lenoir, G., Moulding, C., Murphy, W., Potter, H., Stewart, T., andTaub, R., 1983, Translocations among antibody genes in human cancer.Science,222, 765–771.PubMedGoogle Scholar
  106. [106]
    Leibovici, J., 1984, Serial passage of tumors in mice in the study of tumor progression and testing of antineoplastic drugs.Cancer Research,44, 1981–1984.PubMedGoogle Scholar
  107. [107]
    Leibovici, J., andWolman, M., 1984, Animal models for tumor progression.Anticancer Research,4, 165–168.PubMedGoogle Scholar
  108. [108]
    Lett, H., 1905, An analysis of 99 cases of inoperable carcinoma of the breast treated by oophorectomy.Medico-Chirurgial Transactions,88, 147–189.Google Scholar
  109. [109]
    Ling, V., 1982, Genetic basis of drug resistance in mammalian cells.Drug and Hormone Resistance in Neoplasia, Vol. 1 (Boca Raton, Florida: CRC Press), pp. 1–19.Google Scholar
  110. [110]
    Liotta, L. A., Garbisa, S., andTryggvason, K., 1982, Biochemical mechanisms involved in tumor cell penetration of the basement membrane.Tumor Invasion and Metastasis, edited by L. A. Liotta and I. Hart (The Hague: Martinus Nijhoff), pp. 319–333.Google Scholar
  111. [111]
    Liu, W.-T., Rogers, M. J., Law, L. L., andChang, K. S. S., 1977, Properties of RBL-5 leukemia cells cultivatedin vitro.Journal of the National Cancer Institute,58, 1661–1664.PubMedGoogle Scholar
  112. [112]
    Loveless, S. E., Munson, A. E., andHeppner, G. H., 1983, Mutagenic macrophages (MS) isolated from metastatic mammary tumors.Proceedings of the American Association of Cancer Research,23, 91.Google Scholar
  113. [113]
    Macieira-Coelho, A., 1983, Changes in membrane properties associated with cellular aging.International Reviews in Cytology,83, 183–220.Google Scholar
  114. [114]
    Malinoff, H. L., McCoy, J. P., Varani, J., andWicha, M. S., 1984, Metastatic potential of murine fibrosarcoma cells is influenced by cell surface laminin.International Journal of Cancer,33, 651–655.Google Scholar
  115. [115]
    Manni, A., Trujillo, J. E., andPearson, O. H., 1980, Sequential use of endocrine therapy and chemotherapy for metastatic breast cancer: effect on survival.Cancer Treatment Reports,64, 111–119.PubMedGoogle Scholar
  116. [116]
    Mantovani, A., Giavazzi, R., Alessandre, G., Spreafico, F., andGarattini, S., 1981, Characterization of tumor lines derived from spontaneous metastasis of a transplanted murine sarcoma.European Journal of Cancer,17, 71–76.PubMedGoogle Scholar
  117. [117]
    McGuire, E. J., Mascali, J. J., Grady, S. R., andNicolson, G. L., 1984, Involvement of cell-cell adhesion molecules in liver colonization by metastatic murine lymphoma-lymphosarcoma variants.Clinical and Experimental Metastatsis,2, 213–222.Google Scholar
  118. [118]
    McKinnell, R. G., andTarin, D., 1984, Temperature dependent metastasis of the Lucke renal carcinoma and its significance for studies on mechanisms of metastasis.Cancer Metastasis Reviews,3, 373–386.PubMedGoogle Scholar
  119. [119]
    Medina, D., 1975, Tumor progression.Biology of Tumors: Cellular Biology and Growth, Vol. 3,Cancer: A Comprehensive Treatise, edited by F. F. Becker (New York: Plenum Press), pp. 99–119.Google Scholar
  120. [120]
    Miller, F. R., Miller, B. E., andHeppner, G. H., 1983, Characterization of metastatic heterogeneity among subpopulations of a single mouse mammary tumor: heterogeneity in phenotypic stability.Invasion and Metastasis,3, 22–3.Google Scholar
  121. [121]
    Miller, B. E., Miller, F. R., andHeppner, G. H., 1981, Interactions between tumor subpopulations affecting their sensitivity to the antineoplastic agents cyclophosphamide and methotrexate.Cancer Research,41, 4378–4381.PubMedGoogle Scholar
  122. [122]
    Miller, B. E., Miller, F. R., Leith, J., andHeppner, G. H., 1980, Growth interactionin vivo between tumor subpopulations derived from a single mouse mammary tumor.Cancer Research,40, 3977–3981.PubMedGoogle Scholar
  123. [123]
    Miner, K. M., Kawaguchi, T., Uba, G. W., andNicolson, G. L., 1982, Clonal drift of cell surface, melanogenic and experimental metastatic properties ofin vivo-selected brain meninges-colonizing murine B16 melanoma.Cancer Research,42, 4631–4636.PubMedGoogle Scholar
  124. [124]
    Miner, K. M., Lotan, R., andNicolson, G. L., 1981, Metastatic and melanogenic properties ofin vivo-selected B16 melanoma sublines and their clonal derivatives.Phenotype Expression in Pigment Cells, edited by M. Seiji (Tokyo: University of Tokyo Press), pp. 529–532.Google Scholar
  125. [125]
    Miner, K. M., Reading, C. L., andNicolson, G. L., 1981,In vivo andin vitro production and detection of monoclonal antibodies to surface components on metastatic variants of murine tumor cells.Invasion and Metastasis,1, 158–174.Google Scholar
  126. [126]
    Moore, J., Kieler, T., andBiczowa, B., 1978, Comparative studies of a neartetraploid and near-diploid line of a Ehrlich's ascites tumor propagatedin vivo andin vitro. II. Cytology and transplantability.European Journal of Cancer,4, 81–95.Google Scholar
  127. [127]
    Morgan, J. F., andEng, C. P., 1972, The induction of immunoprotection by mouse ascites tumor cells attenuated in tissue culture.European Journal of Cancer,8, 293–298.PubMedGoogle Scholar
  128. [128]
    Morgan, J. F., Eng, C. P., Heuchert, M. D., andKirk, H. D., 1970, Loss of transplantability and induction of immunoprotection by mouse ascites tumor cells in tissue culture.Proceedings of the Society for Experimental Biology and Medicine,134, 305–308.PubMedGoogle Scholar
  129. [129]
    Neri, A., andNicolson, G. L., 1981, Phenotype drift of metastatic and cell-surface properties of mammary adenocarcinoma cell clones during growthin vitro.International Journal of Cancer,28, 731–738.Google Scholar
  130. [130]
    Neri, A., Rouslahti, E., andNicolson, G. L., 1981, Distribution of fibronectin on clonal cell lines of a rat mammary adenocarcinoma growingin vitro andin vivo at primary and metastatic sites.Cancer Research,41, 5082–5095.PubMedGoogle Scholar
  131. [131]
    Neri, A., Welch, D. R., Kawaguchi, T., andNicolson, G. L., 1982, The development and biologic properties of malignant cell sublines and clones of a spontaneously metastasizing rat mammary adenocarcinoma.Journal of the National Cancer Institute,68, 507–517.Google Scholar
  132. [132]
    Nicolson, G. L., 1984, Generation of phenotypic diversity and progression in metastatic tumor cells.Cancer Metastasis Reviews,3, 25–42.PubMedGoogle Scholar
  133. [133]
    Nicolson, G. L., 1981, The use of animal tumor models to study the metastatic process.Gastrointestinal Cancer, edited by J. R. Stroehlein and M. M. Romsdahl (New York: Raven Press), pp. 427–442.Google Scholar
  134. [134]
    Nicolson, G. L., 1982, Cancer metastasis. Organ colonization and the cell-surface properties of malignant cells.Biochimica et Biophysica Acta,695, 113–176.PubMedGoogle Scholar
  135. [135]
    Nicolson, G. L., 1984, Tumor progression, oncogenes and the evolution of metastatic phenotypic diversity.Clinical and Experimental Metastasis,2, 85–105.PubMedGoogle Scholar
  136. [136]
    Nicolson, G. L., Mascali, J. J., andMcGuire, E. J., 1982, Metastatic RAW117 lymphosarcoma as a model for malignant-normal cell interactions. Possible roles for cell surface antigens in determining the quantity and location of secondary tumors.Oncodevelopmental Biology and Medicine,4, 149–159.PubMedGoogle Scholar
  137. [137]
    Nicolson, G. L., andPoste, G., 1982, Tumor cell diversity and host responses in cancer metastasis. I. Properties of metastatic cells.Current Problems in Cancer,7, 1–83.Google Scholar
  138. [138]
    Nicolson, G. L., andPoste, G., 1983, Tumor cell diversity and host responses in cancer metastasis. II. Host immune responses and therapy of metastasis.Current Problems in Cancer,7, 1–42.Google Scholar
  139. [139]
    Nicolson, G. L.,Steck, P. A.,Welch, D. R., andLembo, T. M., 1983, Heterogeneity and instability of phenotypic and metastatic properties of local tumor- and metastasisderived clones of a mammary carcinoma.Understanding Breast Cancer: Clinical and Laboratory Concepts, edited by M. Rich, J. Hager and P. Furmanske, pp. 145–166.Google Scholar
  140. [140]
    Nowell, P. C., 1976, The clonal evolution of tumor cell populations.Science,194, 23–28.PubMedGoogle Scholar
  141. [141]
    Nowell, P. C., 1983, Tumor progression and clonal evolution: The role of genetic instability.Chrosomome Mutation and Neoplasia, edited by J. German, (New York: A. R. Liss), pp. 413–432.Google Scholar
  142. [142]
    Ohno, S., 1971, Genetic implication of karyological instability of malignant somatic cells.Physiology Reviews,51, 496–526.Google Scholar
  143. [143]
    Olsson, L., andForchhammer, J., 1984, Induction of the metastatic phenotype in a mouse tumor model by 5-azacytidine, and characterization of an antigen associated with metastatic activity.Proceedings of the National Academy of Sciences, U.S.A.,81, 3389–3393.Google Scholar
  144. [144]
    Ossowski, L., andReich, E., 1983, Changes in malignant phenotype of a human carcinoma conditioned by growth environment.Cell,33, 323–333.PubMedGoogle Scholar
  145. [145]
    Pearce, V., Pathak, S., Mellard, D., Welch, D., andNicolson, G. L., 1984, Chromosome and DNA analysis of rat 13762NF mammary adenocarcinoma cell lines and clones of different metastatic potentials.Clinical and Experimental Metastasis,2, 271–286.PubMedGoogle Scholar
  146. [146]
    Peterson, J. A., Ceriani, R. L., Blank, E. N., andOsvaldo, L., 1983, Comparison of rates of phenotypic variability in surface antigen expression in normal and cancerous human breast epithelial cells.Cancer Research,43, 4291–4296.PubMedGoogle Scholar
  147. [147]
    Poste, G., 1983, Cellular heterogeneity in malignant neoplasms and the therapy of metastases.Annals of the New York Academy of Sciences,391, 34–48.Google Scholar
  148. [148]
    Poste, S., Doll, J., Brown, A. B., Tzeng, J., andZeidman, I., 1982, A comparison of the metastatic properties of B16 melanoma clones isolated from cultured cell lines, subcutaneous tumors, and individual lung metastases.Cancer Research,42, 2770–2778.PubMedGoogle Scholar
  149. [149]
    Poste, G., Doll, J., andFidler, I. J., 1981, Interactions among clonal subpopulations affect stability of the metastatic phenotype in polyclonal populations of B16 melanoma cells.Proceedings of the National Academy of Sciences, U.S.A.,78, 6226–6230.Google Scholar
  150. [150]
    Poste, G., andGreig, R., 1982, On the genesis and regulation of cellular heterogeneity in malignant tumors.Invasion and Metastasis,2, 137–176.Google Scholar
  151. [151]
    Poste, G., andGreig, R., 1983, The experimental and clinical implications of cellular heterogeneity in malignant tumors.Journal of Cancer Research and Clinical Oncology,106, 159–170.PubMedGoogle Scholar
  152. [152]
    Poste, G., Greig, R., Tzeng, J., Koestler, T., andCorwin, S., 1984, Interactions between tumor cell subpopulations in malignant tumors.Cancer Invasion and Metastasis: Biological and Therapeutic Aspects, edited by G. L. Nicolson and L. Milas (New York: Raven Press), pp. 223–243.Google Scholar
  153. [153]
    Poste, G., Tzeng, J., Doll, J., Greig, R., Rieman, D., andZeidman, I., 1982, Evolution of tumor cell heterogeneity during progressive growth of individual lung metastases.Proceedings of the National Academy of Sciences, U.S.A.,79, 6574–6578.Google Scholar
  154. [154]
    Prehn, R. T., 1970, Immunostimulation of the lymphodependent phase of neoplastic growth.Journal of the National Cancer Institute,45, 1039–1044.Google Scholar
  155. [155]
    Raz, A., 1982, Clonal emergence of metastatic heterogeneity in a growing tumor.Cancer Letters,17, 153–160.PubMedGoogle Scholar
  156. [156]
    Raz, A., andBen-Zeev, A., 1983, Modulation of the metastatic capability in B16 melanoma by cell shape.Science,221, 1307–1309.PubMedGoogle Scholar
  157. [157]
    Reis, R. J. S., andGoldstein, A., 1982, Variability of DNA methylation patterns during serial passage of human diploid fibroblasts.Proceedings of the National Academy of Sciences, U.S.A.,79, 3949–3953.Google Scholar
  158. [158]
    Romerdahl, C. A., andRubin, H., 1984, Variation in capacity for anchorageindependent growth agar-derived clones of spontaneously transformed BALB/3T3 cells.Cancer Research,44, 5570–5576.PubMedGoogle Scholar
  159. [159]
    Rous, P., andBeard, J. W., 1935, The progression of carcinoma of virus-induced papillomas (Shope).Journal of Experimental Medicine,62, 523–548.Google Scholar
  160. [160]
    Rous, P., andKidd, J. G., 1941, Conditional neoplasms and subthreshold neoplastic states: A study of the tar tumors in rabbits.Journal of Experimental Medicine,73, 365–390.Google Scholar
  161. [161]
    Rowley, J. D., 1984, Biological implications of consistent chromosome rearrangements in leukemia and lymphoma.Cancer Research,44, 3159–3168.PubMedGoogle Scholar
  162. [162]
    Rubin, H., Arnstein, P., andChu, B. M., 1984, High-frequency variation and population drift in a newly tranformed clone of BALB/c3T3 cells.Cancer Research,44, 5242–5248.PubMedGoogle Scholar
  163. [163]
    Rudland, P. S., Dunnington, D. J., Gusterson, B., Monaghan, P., andHughes, C. N., 1984, Production of skeletal muscle elements by cell lines derived from neoplastic rat mammary epithelial stem cells.Cancer Research,44, 2089–2102.PubMedGoogle Scholar
  164. [164]
    Sacchi, A., Mauro, F., andZupi, G., 1984, Changes of phenotypic characteristics of variants derived from Lewis lung carcinoma during long-termin vitro growth.Clinical and Experimental Metastasis,2, 171–178.PubMedGoogle Scholar
  165. [165]
    Schabel, F. M., 1975, Concepts for systemic treatment of micrometastasis.Cancer,35, 15–24.PubMedGoogle Scholar
  166. [166]
    Schirrmacher, V., Altevogt, P., andBosslet, K., 1983, Spontaneous phenotypic shifts from low to high metastatic capacity.Proceedings: NATO ASI on Biochemical and Biological Markers of Neoplastic Transformation, edited by P. Chandra (New York: Plenum Press), pp. 121–131.Google Scholar
  167. [167]
    Schirrmacher, V., Fogel, M., Russman, E., Bosslet, K., Altevogt, P., andBeck, L., 1982, Antigenic variation in cancer immune escape versus immune control.Cancer Metastasis Reviews,1, 241–274.PubMedGoogle Scholar
  168. [168]
    Schmitt, M. K., 1982, Tumor cell heterogeneity and host modulation of tumor phenotype.Dissertation Abstracts International,42, 4356-B.Google Scholar
  169. [169]
    Schor, A, M., andChor, S. L., 1983, Tumor angiogenesis.Journal of Pathology,41, 385–413.Google Scholar
  170. [170]
    Schwarz, R., Schirrmacher, V., andMuhlradt, P. F., 1984, Glycoconjugates of murine tumor lines with different metastatic capacities. I. Differences in fucose utilization and in glycoprotein patterns.International Journal of Cancer,33, 503–509.Google Scholar
  171. [171]
    Sorenson, G. D., Pettengill, O. S., andCate, C. C., 1978, Loss of oncogenicity and concomitant increased immunogenicity of murine plasmacytoma cell lines.American Journal of Pathology,90, 565–581.PubMedGoogle Scholar
  172. [172]
    Steck, P. A., andNicolson, G. L., 1983, Cell surface glycoproteins of 13762NF mammary adenocarcinoma clones of differing metastatic potentials.Experimental Cell Research,147, 255–267.PubMedGoogle Scholar
  173. [173]
    Steck, P. A., andNicolson, G. L., 1984, Cell surface properties of spontaneously metastasizing rat mammary adenocarcinoma cell clones.Transplantation Proceedings,16, 355–360.PubMedGoogle Scholar
  174. [174]
    Steele, V. E., andNettesheim, P., 1981, Unstable cellular differentiation in adenosquamous cell carcinoma.Journal of the National Cancer Institute,67, 149–154.PubMedGoogle Scholar
  175. [175]
    Suzuki, N., Frapart, M., Grdima, D. J., Meistrich, M. L., andWithers, H. R., 1977, Cell cycle dependency of metastatic lung colony formation.Cancer Research,37, 3690–3693.PubMedGoogle Scholar
  176. [176]
    Tainsky, M. A., Cooper, C. S., Giovanella, B. C., andVan De Woode, G. F., 1984, An activated rasn gene: detected in late, but not early, passage human PA1 teratocarcinoma cells.Science,225, 643–645.PubMedGoogle Scholar
  177. [177]
    Talmadge, J. E., Benedict, K., Madsen, J., andFidler, I. J., 1984, Development of biological diversity and susceptibility to chemotherapy in murine cancer metastasis.Cancer Research,44, 3801–3805.PubMedGoogle Scholar
  178. [178]
    Talmadge, J. E., Starkey, J. R., Davis, W. C., andCohen, A. L., 1979, Introduction of metastatic heterogeneity by short-termin vivo passage of a cloned transformed cell line.Journal of Supramolecular Structure,12, 227–243.PubMedGoogle Scholar
  179. [179]
    Taupier, M. A., Kearney, J. F., Leibson, P. J., Loken, M. R., andSchreiber, H., 1983, Nonrandom escape of tumor cells from immune lysis due to intraclonal fluctuations in antigen expression.Cancer Research,43, 4050–4056.PubMedGoogle Scholar
  180. [180]
    Terranova, V. P., Liotta, L. A., Russo, R. G., andMartin, G. R., 1982, Role of laminin in the attachment and metastasis of murine tumor cells.Cancer Research,42, 2265–2269.PubMedGoogle Scholar
  181. [181]
    Terranova, V. P., Rao, C. N., Kalebic, T., Margulies, I. M., andLiotta, L. A., 1983, Laminin receptor on human breast carcinoma cells.Proceedings of the National Academy of Sciences, U.S.A.,80, 444–448.Google Scholar
  182. [182]
    Terranova, V. P., Williams, J. E., Liotta, L. A., andMartin, G. R., 1984, Modulation of the metastatic activity of melanoma cells by laminin and fibronectin.Science,226, 982–984.PubMedGoogle Scholar
  183. [183]
    Thor, A.,Hand, P. H.,Wunderlich, D.,Caruso, A.,Muraro, R., andSchlom, J., Monoclonal antibodies define differentialras gene expression in malignant and benign colonic diseases.Nature,311, 562–565.Google Scholar
  184. [184]
    Tolifon, P. J., Buckley, N., andDeen, D. F., 1985, Effect of cell-cell interactions on drug sensitivity and growth of drug-sensitive and resistant tumor cells in spheroids.Science,226, 862–864.Google Scholar
  185. [185]
    Tomasovic, A. P., Thames, H. D., andNicolson, G. L., 1982, Heterogeneity in hyperthermic sensitivities of rat 13762NF mammary adenocarcinoma cell clones of differing metastatic potentials.Radiation Research,91, 555–563.PubMedGoogle Scholar
  186. [186]
    Trainer, D. L., andWheelock, E. F., 1984, Phenotype shifts in the L5178Y lymphoma population during progression of the tumor-dormant state in DBA/mice.Cancer Research,44, 1063–1071.PubMedGoogle Scholar
  187. [187]
    Trainer, D. L., andWheelock, E. F., 1984, Characterization of L5178Y cell phenotypes isolated during progression of the tumor-dormant state in DBA/2 mice.Cancer Research,44, 2897–2906.PubMedGoogle Scholar
  188. [188]
    Tsuruo, T., 1983, Reversal of acquired resistance to vinca alkaloids and anthracycline antibiotics.Cancer Treatment Reports,67, 889–894.PubMedGoogle Scholar
  189. [189]
    Tsuruo, T., Iida, H., Tsukagoshi, S., andSakurai, Y., 1981, Overcoming of vincristine resistance in P388 leukemiain vivo andin vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil.Cancer Research,41, 1967–1972.PubMedGoogle Scholar
  190. [190]
    Urban, J. L., Burton, R. C., Holland, J. M., Kripke, M. L., andSchreiber, H., 1982, Mechanisms of syngeneic tumor rejection. Susceptibility of host-selected progressor variants to various immunological effector cells.Journal of Experimental Medicine,155, 557–573.PubMedGoogle Scholar
  191. [191]
    Vaage, J., 1978, A survey of growth characteristics of and the host reactions to one hundred C3H/He mammary carcinomas.Cancer Research,38, 331–338.PubMedGoogle Scholar
  192. [192]
    Van Dongen, J. A., 1984, Pulmonary metastasectomy-reappraisal of selection criteria.Treatment of Metastasis: Problems and Prospects, edited by K. Hellmann and S. A. Eccles (London, Philadelphia: Taylor & Francis), pp. 1–4.Google Scholar
  193. [193]
    Varani, J., andLovett, E. J., 1982, Phenotypic stability of murine tumor cellsin vitro andin vivo.Journal of the National Cancer Institute,68, 957–962.PubMedGoogle Scholar
  194. [194]
    Vaupel, P. W., Frinak, S., andBicher, H. I., 1981, Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma.Cancer Research,41, 2008–2013.PubMedGoogle Scholar
  195. [195]
    Vindelov, L. L., Hansen, H. H., Gersel, A., Hirsch, F. R., andNissen, N. I., 1982, Treatment of small cell carcinoma of the lung monitored by sequential flow cytometric DNA analysis.Cancer Research,42, 2499–2505.PubMedGoogle Scholar
  196. [196]
    Von Hoff, D. D., Clark, G. M., 1984, Drug sensitivity of primary versus metastasis.Human Tumor Cloning, edited by S. E. Salmon and J. M. Trent (New York: Grune & Stratton), pp. 183–196.Google Scholar
  197. [197]
    Wake, N., Isaacs, J., andSandberg, A. A., 1982, Chromosomal changes associated with progression of the Dunning R-3327 rat prostatic adenocarcinoma system.Cancer Research,42, 4131–4142.PubMedGoogle Scholar
  198. [198]
    Walker, C., Ranney, D. F., andShay, J. W., 1984, 5-azacytidine-induced uncoupling of differentiation and tumorigenicity in a murine cell line.Journal of the National Cancer Institute,73, 877–885.PubMedGoogle Scholar
  199. [199]
    Wang, N., Yu, S. H., Liener, I. D., Hebbel, R. P., Eaton, J. W., andMcKhann, C. F., 1982, Characterization of high and low metastatic clones derived from a methylcholanthrene-induced murine fibrosarcoma.Cancer Research,42, 1046–1051.PubMedGoogle Scholar
  200. [200]
    Welch, D. R., Evans, D. P., Tomasovic, S. P., Krizman, D. B., Milas, L., andNicolson, G. L., 1985, Simultaneous and independent drift of multiple phenotypes in mammary adenocarcinoma cell clones.Treatment of Metastasis: Problems and Prospects, edited by K. Hellmann and S. A. Eccles (London, Philadelphia: Taylor & Francis), pp. 239–242.Google Scholar
  201. [201]
    Welch, D. R., Evans, D. P., Tomasovic, S. P., Milas, L., andNicolson, G. L., 1984, Multiple phenotypic divergence of mammary adenocarcinoma cell clones. II. Sensitivity to radiation, hyperthermia and FUDR.Clinical and Experimental Metastasis,2, 357–371.PubMedGoogle Scholar
  202. [202]
    Welch, D. R., Krizman, D. B., andNicolson, G. L., 1984, Multiple phenotypic divergence of mammary adenocarcinoma cell clones. I.In vitro andin vivo properties.Clinical and Experimental Metastasis,2, 333–355.PubMedGoogle Scholar
  203. [203]
    Welch, D. R., Milas, L., Tomasovic, S. P., andNicolson, G. L., 1982, Heterogenous response and clonal drift of sensitivities of metastatic 13762NF mammary adenocarcinoma clones to gamma radiationin vitro.Cancer Research,43, 6–10.Google Scholar
  204. [204]
    Welch, D. R., Neri, A., andNicolson, G. L., 1983, Comparison of ‘spontaneous’ and ‘experimental’ metastasis using rat 13762NF mammary adenocarcinoma metastatic cell clones.Invasion and Metastasis,3, 65–80.Google Scholar
  205. [205]
    Welch, D. R., andNicolson, G. L., 1983, Phenotypic drift and heterogeneity in response of metastatic mammary adenocarcinoma cell clones to adriamycin, 5-fluoro-2′-deoxyuridine and methotrexate treatmentin vitro.Clinical and Experimental Metastasis,1, 317–327.PubMedGoogle Scholar
  206. [206]
    Werling, H. O., Ghosh, S., andSpiese, E., 1984, Chromosome analysis of two rat tumor cell lines. Possible role of DMs and HSR in metastasis.Journal of Cancer Research and Clinical Oncology,107, 172–177.PubMedGoogle Scholar
  207. [207]
    Wilson, V. L., andJones, P. A., 1983, DNA methylation decreases in aging but not in normal cells.Science,220, 1055–1057.PubMedGoogle Scholar
  208. [208]
    Yamada, K. M., Yamada, S. S., andPastan, I., 1977, Quantitation of a transformation-sensitive, adhesive cell surface glycoprotein.Journal of Cell Biology,74, 649–654.PubMedGoogle Scholar
  209. [209]
    Yamashina, K., andHeppner, G. H., 1985, Differential genetic instability of tumor cell lines from a single tumor: Correlation of frequency of induced mutation and metastatic potential.Cancer Research,45 (in the press).Google Scholar

Copyright information

© Kluwer Academic Publishers 1985

Authors and Affiliations

  • Danny R. Welch
    • 1
    • 2
  • S. P. Tomasovic
    • 1
    • 2
  1. 1.Cancer and Viral Diseases Research UnitThe Upjohn CompanyKalamazoo
  2. 2.Department of Tumor BiologyThe University of Texas-M. D. Anderson Hospital and Tumor InstituteHoustonUSA

Personalised recommendations