Journal of Muscle Research & Cell Motility

, Volume 12, Issue 1, pp 3–25 | Cite as

Myosin light chains and troponin C: Structural and evolutionary relationships revealed by amino acid sequence comparisons

  • John H. Collins
Review

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, H. H., Krauskopf, M. &Siddiqui, M. A. Q. (1983) The nucleotide sequence of myosin light chain (L-2A) mRNA from embryonic chicken cardiac muscle tissue.Nucleic Acids Res. 11, 1123–31.PubMedGoogle Scholar
  2. Arnold, H.-H., Lohse, P., Seidel, U. &Bober, E. (1988) A novel human cardiac myosin alkali light chain is developmentally regulated: expression in fetal cardiac and skeletal muscle and in adult atria.Eur. J. Biochem. 178, 53–60.PubMedGoogle Scholar
  3. Baba, M. L., Goodman, M., Berger-Cohn, J., Demaille, J. G. &Matsuda, G. (1984) The early adaptive evolution of calmodulin.Molec. Biol. Evol. 1, 442–55.PubMedGoogle Scholar
  4. Babu, Y. S., Sack, J. S., Greenhough, T. J., Bugg, C. E., Means, A. R. &Cook, W. J. (1985) Three-dimensional structure of calmodulin.Nature 315, 37–40.PubMedGoogle Scholar
  5. Bagshaw, C. R. &Kendrick-Jones, J. (1979) Characterization of homologous divalent metal ion binding sites of vertebrate and molluscan myosins using electron paramagnetic resonance spectroscopy.J. Molec. Biol. 130, 317–30.PubMedGoogle Scholar
  6. Barker, W. C., Ketcham, L. &Dayhoff, M. O. (1978) The troponin C superfamily. InAtlas of Protein Sequence and Structure, vol. 5, pp. 273–84. Silver Spring, MD: National Biomedical Research Foundation.Google Scholar
  7. Barton, P. J. R. &Buckingham, M. E. (1985) The myosin alkali light chain proteins and their genes.Biochem. J. 231, 249–61.PubMedGoogle Scholar
  8. Barton, P. J. R., Robert, B., Cohen, A., Garner, I., Sassoon, D., Weydert, A. &Buckingham, M. E. (1988) Structure and sequence of the myosin alkali light chain gene expressed in adult cardiac atria and fetal striated muscle.J. Biol. Chem. 263, 12669–76.PubMedGoogle Scholar
  9. Bechet, J.-J. &Houadjeto, M. (1989) Prediction of the secondary structure of myosin light chains from comparison of homologous sequences. Implications for the interaction between myosin heavy and light chains.Biochim. Biophys. Acta 996, 199–208.PubMedGoogle Scholar
  10. Boguta, G., Stepkowski, D. &Bierzynski, A. (1988a) Theoretical estimation of the calcium-binding constants for proteins from the troponin C superfamily based on a secondary structure prediction method. I. Estimation procedure.J. Theor. Biol. 135, 41–61.PubMedGoogle Scholar
  11. Boguta, G., Stepkowski, D. &Bierzynski, A. (1988b) Theoretical estimation of the calcium-binding constants for proteins from the troponin C superfamily based on a secondary structure prediction method. II. Applications.J. Theor. Biol. 135, 63–73.PubMedGoogle Scholar
  12. Chen, Q., Taljanidisz, J., Sarkar, S., Tao, T. &Gergely, J. (1988) Cloning, sequencing and expression of a full-length rabbit fast skeletal troponin-C cDNA.FEBS Letters 228, 22–6.PubMedGoogle Scholar
  13. Chisolm, R. L., Rushforth, A. M., Pollenz, R. S., Kuczmarski, E. R. &Tafuri, S. R. (1988)Dictyostelium discoideum myosin: isolation and characterization of cDNAs encoding the essential light chain.Molec. Cell. Biol. 8, 794–801.PubMedGoogle Scholar
  14. Collins, J. H. (1974) Homology of myosin light chains, troponin C and parvalbumins deduced from comparison of their amino acid sequences.Biochem. Biophys. Res. Commun. 58, 301–8.PubMedGoogle Scholar
  15. Collins, J. H. (1976a) Homology of myosin DTNB light chain with alkali light chains, troponin C and parvalbumin.Nature 259, 699–700.PubMedGoogle Scholar
  16. Collins, J. H. (1976b) Structure and evolution of troponin C and related proteins.Soc. Exp. Biol. Symp. 30, 303–34.Google Scholar
  17. Collins, J. H., Potter, J. D., Horn, M. J., Wilshire, G. &Jackman, N. (1973) The amino acid sequence of rabbit skeletal muscle troponin C: gene replication and homology with calcium-binding proteins from carp and hake muscle.FEBS Letters 36, 268–72.PubMedGoogle Scholar
  18. Collins, J. H., Greaser, M. L., Potter, J. D. &Horn, M. J. (1977) Determination of the amino acid sequence of troponin C from rabbit skeletal muscle.J. Biol. Chem. 252, 6356–62.Google Scholar
  19. Collins, J. H., Jakes, R., Kendrick-Jones, J., Leszyk, J., Barouch, W., Theibert, J. L., Spiegel, J. &Szent-Gyorgyi, A. G. (1986a) Amino acid sequence of myosin essential light chain from the scallopAquipecten irradians.Biochem. 25, 7651–6.Google Scholar
  20. Collins, J. H., Theibert, J. L. &Dalla Libera, L. (1986b) Amino acid sequence of rabbit ventricular myosin light chain-2: identity with the slow skeletal muscle isoform.Biosci. Rep. 6, 655–61.PubMedGoogle Scholar
  21. Dalla Libera, L., Hoffmann, E., Floroff, M. &Jackowski, G. (1989) Isolation and nucleotide sequence of the cDNA encoding human ventricular myosin light chain 2.Nucl. Acids Res. 17, 2360.PubMedGoogle Scholar
  22. Falkenthal, S., Parker, V. P., Mattox, W. W. &Davidson, N. (1984)Drosophila melanogaster has only one myosin alkali light-chain gene which encodes a protein with considerable amino acid sequence homology to chicken myosin alkali light chains.Molec. Cell. Biol. 4, 956–65.PubMedGoogle Scholar
  23. Falkenthal, S., Parker, V. P. &Davidson, N. (1985) Developmental variations in the splicing pattern of transcripts from theDrosophila gene encoding myosin alkali light chain result in different carboxyl-terminal amino acid sequences.Proc. Natn. Acad. Sci., (USA)82, 449–53.Google Scholar
  24. Fodor, W. L., Darras, B., Seharaseyon, J., Falkenthal, S., Francke, U. &Vanin, E. F. (1989) Human ventricular/slow twitch myosin alkali light chain gene characterization, sequence and chromosomal location.J. Biol. Chem. 264, 2143–9.PubMedGoogle Scholar
  25. Frank, G. &Weeds, A. G. (1974) The amino acid sequence of the alkali light chains of rabbit skeletal-muscle myosin.Eur. J. Biochem. 44, 317–34.PubMedGoogle Scholar
  26. Gahlmann, R., Wade, R., Gunning, P. &Kedes, L. (1988) Differential expression of slow and fast skeletal muscle troponin C. Slow skeletal muscle troponin C is expressed in human fibroblasts.J. Molec. Biol. 201, 379–91.PubMedGoogle Scholar
  27. Garnier, J., Osguthorpe, D. J. &Robson, B. (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins.J. Molec. Biol. 120, 97–120.PubMedGoogle Scholar
  28. Goodwin, E. B., Szent-Gyorgyi, A. G. &Leinwand, L. (1987) Cloning and characterization of the scallop essential and regulatory myosin light chain cDNAs.J. Biol. Chem. 262, 11052–6.PubMedGoogle Scholar
  29. Goodwin, E. B., Leinwand, L. A. &Szent-Gyorgyi, A. G. (1990) Regulation of scallop myosin by mutant regulatory light chains.J. Molec. Biol. (in press).Google Scholar
  30. Garfinkel, L. I., Periasamy, M. &Nadal-Ginard, B. (1982) Cloning and characterization of cDNA sequences corresponding to myosin light chains 1, 2, and 3, troponin-C., troponin-T, alpha-tropomyosin, and alpha-actin.J. Biol. Chem. 257, 11078–86.PubMedGoogle Scholar
  31. Grand, R. J. A. &Perry, S. V. (1983) Preparation of the alkali and P light chains of chicken gizzard myosin.Biochem. J. 211, 267–72.PubMedGoogle Scholar
  32. Hailstones, D. L. &Gunning, P. W. (1990) Characterization of human myosin light chains 1sa and 3nm: implications for isoform evolution and function.Molec. Cell. Biol. 10, 1095–104.PubMedGoogle Scholar
  33. Henderson, S. A., Xu, Y. &Chien, K. R. (1988) Nucleotide sequence of full length cDNAs encoding rat cardiac myosin light chain-2.Nucleic Acids Res. 16, 4722.PubMedGoogle Scholar
  34. Henderson, S. A., Spencer, M., Sen, A., Kumar, C., Siddiqui, M. A. Q. &Chien, K. R. (1989) Structure, organization and expression of the rat cardiac myosin light chain-2 gene.J. Biol. Chem. 264, 18142–8.PubMedGoogle Scholar
  35. Henry, G. D., Dalgarno, D. C., Marcus, G., Scott, M., Levine, B. A. &Trayer, I. P. (1982) The occurrence of alpha-Ntrimethylalanine as the N-terminal amino acid of some myosin light chains.FEBS Letters 144, 11–15.PubMedGoogle Scholar
  36. Henry G. D., Trayer, I. P., Brewer, S. &Levine, B. A. (1985) The widespread distribution of alpha-N-trimethylalanine as the N-terminal amino acid of light chains from vertebrate striated muscle myosins.Eur. J. Biochem. 148, 75–82.PubMedGoogle Scholar
  37. Herzberg, O. &James, M. N. G. (1985a) Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution.Nature 313, 653–9.PubMedGoogle Scholar
  38. Herzberg, O. &James, M. N. G. (1985b) Common structural framework of the two Ca/Mg binding loops of troponin C and other Ca binding proteins.Biochemistry 24, 5298–302.PubMedGoogle Scholar
  39. Herzberg, O. &James, M. N. G. (1988) Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 Å resolution.Journal of Molec. Biol. 203, 761–79.Google Scholar
  40. Hoffmann, E., Shi, Q. W., Fioroff, M., Mickle, D. A. G., Wu, T.-W., Olley, P. M. &Jackowski, G. (1988) Molecular cloning and complete nucleotide sequence of a human ventricular myosin light chain 1.Nucleic Acids Res. 16, 2353.PubMedGoogle Scholar
  41. Inoue, A., Yanasigawa, M., Takano-Ohmuro, H. &Masaki, T. (1989) Two isoforms of smooth muscle myosin regulatory light chain in chicken gizzard.Eur. J. Biochem. 183, 645–51.PubMedGoogle Scholar
  42. Kawashima, M., Nabeshima, Y., Obinata, T. &Fujii-Kuriyama, Y. (1987) A common myosin light chain is expressed in chicken embryonic skeletal, cardiac and smooth muscles and in brain continuously from embryo to adult.J. Biol. Chem. 262, 14408–14.PubMedGoogle Scholar
  43. Kendrick-Jones, J. &Jakes, R. (1976) Myosin-linked regulation: a chemical approach. InMyocardial Failure: International Boehringer Symposium, Munich (edited byG. Ricker, A. Weber &J. Goodwin), pp. 28–40. Berlin: Springer-VerlagGoogle Scholar
  44. Kendrick-Jones, J., Szentkiralyi, E. M. &Szent-Gyorgyi, A. G. (1976) Regulatory light chains in myosins.J. Molec. Biol. 104, 747–75.PubMedGoogle Scholar
  45. Klotz, C., Leger, J. J. &Elzinga, M. (1982) Comparative sequence of myosin light chains from normal and hypertrophied human hearts.Circulation Res. 50, 201–9.PubMedGoogle Scholar
  46. Kobayashi, T., Tagaki, T., Konishi, K., Hamada, Y., Kawaguchi, M. &Kohama, K. (1988) Amino acid sequence of the calcium-binding light chain of myosin from the lower eukaryotePhysarum polycephalum.J. Biol. Chem. 263, 305–13.PubMedGoogle Scholar
  47. Kobayashi, T., Takagi, T., Konishi, K., Morimoto, S. &Ohtsuki, I. (1989a) Amino acid sequence of porcine cardiac muscle troponin C.J. Biochem. 106, 55–9.PubMedGoogle Scholar
  48. Kobayashi, T., Kagami, O., Takagi, T. &Konishi, K. (1989b) Amino acid sequence of horseshoe crab,Tachypleus tridentatus, striated muscle troponin C.J. Biochem. 105, 823–8.PubMedGoogle Scholar
  49. Kobayashi, T., Takagi, T., Konishi, K. &Wnuk, W. (1989c) Amino acid sequences of the two major isoforms of troponin C from crayfish.J. Biol. Chem. 264, 18247–59.PubMedGoogle Scholar
  50. Kohama, K. (1989) Ca-binding light chain of Ca-inhibitory myosin fromPhysarum polycephalum. InCalcium Signal and Cell Response (edited byK. Yagi &T. Miyazaki), pp. 95–105. Berlin: Springer-Verlag and Tokyo: Japan Scientific Society Press.Google Scholar
  51. Kohama, K. &Kendrick-Jones, J. (1986) The inhibitory Caregulation of the actin-activated Mg-ATPase activity of myosin fromPhysarum polycephalum plasmodia.J. Biochem. 99, 1433–46.PubMedGoogle Scholar
  52. Kumar, C. C., Cribbs, L., Delaney, P., Chien, K. R. &Siddiqui, M. A. Q. (1986) Heart myosin light chain 2 gene. Nucleotide sequence of full length cDNA and expression in normal and hypertensive rat.J. Biol. Chem. 261, 2866–72.PubMedGoogle Scholar
  53. Kumar, C. C., Mohan, S. R., Zavodny, P. J., Narula, S. K. &Leibowitz, P. J. (1989) Characterization and differential expression of human vascular smooth muscle myosin light chain 2 isoform in nonmuscle cells.Biochem. 28, 4027–35.Google Scholar
  54. Kurabayashi, M., Komuro, I., Tsuchimochi, H. &Yazaki, Y. (1988) Molecular cloning and characterization of human atrial and ventricular myosin alkali light chain cDNAs.J. Biol. Chem. 263, 13930–6.PubMedGoogle Scholar
  55. Kwon, H., Goodwin, E. B., Nyitray, L., Berliner, E., O'Neall-Hennessey, E., Melandri, F. D. &Szent-Gyorgyi, A. G. (1990) Isolation of the regulatory domain of scallop myosin: role of the essential light chain in calcium binding.Proc. Natn. Acad. Sci. U.S.A. 87, 4771–5.Google Scholar
  56. Leavis, P. C. &Gergely, J. (1984) Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction.CRC Crit. Rev. Biochem. 16, 235–305.PubMedGoogle Scholar
  57. Lenz, S. L., Lohse, P., Seidel, U. &Arnold, H.-H. (1989) The alkali light chains of human smooth and nonmuscle myosins are encoded by a single gene: tissue-specific expression by alternative splicing pathways.J. Biol. Chem. 264, 9009–15.PubMedGoogle Scholar
  58. Lorkin, P. A. &Lehmann, H. (1983) Malignant hypothermia in pigs: a search for abnormalities in Ca binding proteins.FEBS Letters 153, 81–7.PubMedGoogle Scholar
  59. Lohse, P., Winter, B., Mouly, V., Fiszman, M. Y. &Arnold, H.-H. (1988) Evidence for distinct phosphorylatable myosin light chains in avian heart and slow skeletal muscle.Dev. Biol. 125, 229–33.PubMedGoogle Scholar
  60. Maisonpierre, P. C., Hastings, K. E. M. &Emerson, C. P. (1987) The cloning and the codon and amino acid sequence of the quail slow/cardiac troponin C cDNA.Methods Enzymol. 139, 326–36.PubMedGoogle Scholar
  61. Maita, T., Umegane, T., Kato, Y. &Matsuda, G. (1980) Amino acid sequence of the L-1 light chain of chicken cardiacmuscle myosin.Eur. J. Biochem. 107, 565–75.PubMedGoogle Scholar
  62. Maita, T., Umegane, T. &Matsuda, G. (1981a) Amino-acid sequence of the L-4 light chain of chicken skeletal-muscle myosin.Eur. J. Biochem. 114, 45–9.PubMedGoogle Scholar
  63. Maita, T., Chen, J.-I. &Matsuda, G. (1981b) Amino-acid sequence of the 20,000-molecular-weight light chain of chicken gizzard-muscle myosin.Eur. J. Biochem. 117, 417–24.PubMedGoogle Scholar
  64. Maita, T., Konno, K., Ojima, T. &Matsuda, G. (1984) Amino acid sequences of the regulatory light chains of striated adductor muscle myosins from Ezo giant scallop and Akazara scallop.J. Biochem. 95, 167–77.PubMedGoogle Scholar
  65. Maita, T., Konno, K., Maruta, S., Norisue, H. &Matsuda, G. (1987a) Amino acid sequence of the essential light chain of adductor muscle myosin from Ezo giant scallop,Patinopecten yessoensis.J. Biochem. 102, 1141–9.PubMedGoogle Scholar
  66. Maita, T., Tanaka, H., Konno, K. &Matsuda, G. (1987b) Amino acid sequence of the regulatory light chain of squid mantle muscle myosin.J. Biochem. 102, 1151–7.PubMedGoogle Scholar
  67. Matsuda, G., Maita, T., Suzuyama, Y., Setoguchi, M. &Umegane, T. (1977a) Amino acid sequence of the L-2 light chain of rabbit skeletal muscle myosin.J. Biochem. 81, 809–11.PubMedGoogle Scholar
  68. Matsuda, G., Suzuyama, Y., Maita, T. &Umegane, T. (1977b) The L-2 light chain of chicken skeletal muscle myosin.FEBS Letters 84, 53–6.PubMedGoogle Scholar
  69. Matsuda, G., Maita, T. &Umegane, T. (1981a) The primary structure of L-1 light chain of chicken fast skeletal myosin and its genetic implication.FEBS Letters 126, 111–13.PubMedGoogle Scholar
  70. Matsuda, G., Maita, T., Kato, Y., Chen, J.-I. &Umegane, T. (1981b) Amino acid sequences of the cardiac L2-A, L2-B and gizzard 17,000 light chains of gizzard muscle myosin.FEBS Letters 135, 232–6.PubMedGoogle Scholar
  71. Matsuda, G. (1983) The light chains of muscle myosin, its structure, function and evolution.Adv. Biophys. 16, 185–218.PubMedGoogle Scholar
  72. Miyanishi, T., Maita, T., Morita, F., Kondo, S. &Matsuda, G. (1985) Amino acid sequences of the two kinds of regulatory light chains of adductor smooth muscle myosin fromPatinopecten yessoensis.J. Biochem. 97, 541–51.PubMedGoogle Scholar
  73. McNally, E. M., Buttrick, P. M. &Leinwand, L. A. (1989) Ventricular myosin light chain 1 is developmentally regulated and does not change in hypertension.Nucleic Acids Res. 17, 2753–67.PubMedGoogle Scholar
  74. Messer, N. G. &Kendrick-Jones, J. (1988) Molecular cloning and sequencing of the chicken smooth muscle myosin regulatory light chain.FEBS Letters 234, 49–52.PubMedGoogle Scholar
  75. Michnoff, C. H., Kemp, B. E. &Stull, J. T. (1986) Phosphorylation of synthetic peptides by skeletal muscle myosin light chain kinase.J. Biol. Chem. 261, 8320–6.PubMedGoogle Scholar
  76. Nabeshima, Y., Fujii-Kuriyama, Y., Muramasu, M. &Ogata, K. (1982) Molecular cloning and nucleotide sequences of the complementary DNAs to chicken skeletal muscle myosin two alkali light chain mRNAs.Nucleic Acids Res. 10, 6099–110.PubMedGoogle Scholar
  77. Nabeshima, Y., Fujii-Kuriyama, Y., Muramatsu, M. &Ogata, K. (1984) Alternative transcription and two modes of splicing result in two myosin light chains from one gene.Nature 308, 333–8.PubMedGoogle Scholar
  78. Nabeshima, Y., Nabeshima, Y., Nonomura, Y. &Fujii-Kuriyama, Y. (1987) Nonmuscle and smooth muscle myosin light chain mRNAs are generated from a single gene by the tissue-specific alternative RNA splicing.J. Biol. Chem. 262, 10608–12.PubMedGoogle Scholar
  79. Nabeshima, Y., Nabeshima, Y., Kawashima, M., Nakamura, S., Nonomura, Y. &Fujii-Kuriyama, Y. (1988) Isolation of the chick myosin alkali light chain gene expressed in embryonic gizzard muscle and transitional expression of the light chain gene familyin vivo.J. Molec. Biol. 204, 497–505.PubMedGoogle Scholar
  80. Nakamura, S., Nabeshima, Y., Nonomura, Y. &Fujii-Kuriyama, Y. (1988) Single chicken cardiac myosin alkali light-chain gene generates two different mRNAs by alternative splicing of a complex exon.J. Molec. Biol. 203, 895–904.PubMedGoogle Scholar
  81. Nudel, U., Calvo, J. M., Shani, M. &Levy, Z. (1984) The nucleotide sequence of a rat myosin light chain 2 gene.Nucleic Acids Res. 12, 7175–86.PubMedGoogle Scholar
  82. Parmacek, M. S. &Leiden, J. M. (1989) Structure and expression of the murine slow/cardiac troponin C gene.J. Biol. Chem. 264, 13217–25.PubMedGoogle Scholar
  83. Parker, V. P., Falkenthal, S. &Davidson, N. (1985) Characterization of the myosin light-chain-2 gene ofDrosophila melanogaster.Molec. Cell. Biol. 5, 3058–68.PubMedGoogle Scholar
  84. Pearson, R. B., Jakes, R., John, M., Kendrick-Jones, J. &Kemp, B. E. (1984) Phosphorylation site sequence of smooth muscle myosin light chain.FEBS Letters 168, 108–12.PubMedGoogle Scholar
  85. Periasamy, M., Strehler, E. E., Garfinkel, L. I., Gubits, R. M., Ruiz-Opazo, N. &Nadal-Ginard, B. (1984) Fast skeletal muscle myosin light chains 1 and 3 are produced from a single gene by a combined process of differential RNA transcription and splicing.J. Biol. Chem. 259, 13595–604.PubMedGoogle Scholar
  86. Periasamy, M., Wadgaonkar, R., Kumar, C., Martin, B. J. &Siddiqui, M. A. Q. (1989) Characterization of a rat myosin akali light chain gene expressed in ventricular and slow twitch skeletal muscles.Nucleic Acids Res. 17, 7723–34.PubMedGoogle Scholar
  87. Potter, J. D. &Gergely, J. (1975) The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase.J. Biol. Chem. 250, 4628–33.PubMedGoogle Scholar
  88. Potter, J. D., Johnson, J. D., Dedman, J. R., Schreiber, W. E., Mandel, F., Jackson, R. L. &Means, A. R. (1977) Calciumbinding proteins: relationship of binding, structure, conformation and biological function. InCalcium Binding Proteins and Calcium Function (edited byR. H. Wasserman, R. A. Carradino, E. Carafoli, R. H. Kretsinger, D. H. Maclennan &F. L. Siegel), pp. 239–50. North-Holland, New York, Amsterdam, Oxford.Google Scholar
  89. Putkey, J. A., Carrol, S. L. &Means, A. R. (1987) The nontranscribed chicken calmodulin pseudogene crosshybridizes with mRNA from the slow-muscle troponin C gene.Molec. Cell. Biol. 7, 1549–53.PubMedGoogle Scholar
  90. Putkey, J. A., Sweeney, H. L. &Campbell, S. T. (1989) Sitedirected mutation of the trigger calcium-binding sites in cardiac troponin C.J. Biol. Chem. 264, 12370–8.PubMedGoogle Scholar
  91. Reinach, F. C. &Fischmann, D. A. (1985) Recombinant DNA approach for defining the primary structure of monoclonal antibody epitopes. The analysis of a conformation-specific antibody to myosin light chain 2.J. Mole. Biol. 181, 411–22.Google Scholar
  92. Reinach, F. C. &Karlsson, R. (1988) Cloning, expression and site-directed mutagenesis of chicken skeletal muscle troponin C.J. Biol. Chem. 263, 2371–6.PubMedGoogle Scholar
  93. Robert, B., Daubas, P., Akimenko, M.-A., Cohen, A., Garner, I., Guenet, J.-L. &Buckingham, M. (1984) A single locus in the mouse encodes both myosin light chains 1 and 3, a second locus corresponds to a related pseudogene.Cell 39, 129–40.PubMedGoogle Scholar
  94. Roher, A., Lieska, N. &Spitz, W. (1986) The amino acid sequence of human cardiac troponin-C.Muscle Nerve 9, 73–7.PubMedGoogle Scholar
  95. Romero-Herrara, A. E., Castillo, O. &Lehman, H. (1976) Human muscle proteins: the primary structure of troponin C.J. Molec. Evol. 8, 251–70.PubMedGoogle Scholar
  96. Rovner, A. S., McNally, E. M. &Leinwand, L. A. (1990) Complete cDNA sequence of rat atrial myosin light chain 1: patterns of expression during development and with hypertension.Nucleic Acids Res. 18, 1581–6.PubMedGoogle Scholar
  97. Rushbrook, J. I., Wadewitz, A. G., Elzinga, M., Yao, T.-T. &Somes, R. G., Jr. (1988) Variability in the amino terminus of myosin light chain 1.Biochemistry 27, 8953–8.PubMedGoogle Scholar
  98. Satyshur, K. A., Rao, S. T., Pyzalska, D., Drendel, W., Greaser, M. &Sundaralingam, M. (1988) Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2-A resolution.J. Biol. Chem. 263, 1628–47.PubMedGoogle Scholar
  99. Saimi, Y., Martinac, B., Gustin, M. C., Culbertson, M. R., Adler, J. &Kung, C. (1988) Ion channels inParamecium, yeast, andEscherichia coli. Trends Biochem. Sci. 13, 304–9.PubMedGoogle Scholar
  100. Seidel, U., Bober, E., Winter, B., Lenz, S., Lohse, P. &Arnold, H.-H. (1987) The complete nucleotide sequences of cDNA clones coding for human myosin light chains 1 and 3.Nucleic Acids Res. 15, 4989.PubMedGoogle Scholar
  101. Seidel, U., Bober, E., Winter, B., Lenz, S., Lohse, P., Goedde, H. W., Grzeschik, K. H. &Arnold, H.-H. (1988) Alkali myosin light chains in man are encoded by a multigene family that includes the adult skeletal muscle, the embryonic or atrial, and nonsarcomeric isoforms.Gene 66, 135–46.PubMedGoogle Scholar
  102. Smith, V. L., Doyle, K. E., Maune, J. F., Munjaal, R. P. &Beckingham, K. (1987) Structure and sequence of theDrosophila melanogaster calmodulin gene.J. Molec. Biol. 196, 471–85.PubMedGoogle Scholar
  103. Stafford, W. F. &Szent-Gyorgyi, A. A. (1978) Physical characterization of myosin light chains.Biochemistry 17, 607–14.PubMedGoogle Scholar
  104. Strehler, E. E., Periasamy, M., Strehler-Page, M.-A. &Nadal-Ginard, B. (1985) Myosin light-chain 1 and 3 gene has two structurally distinct and differentially regulated promoters evolving at different rates.Molec. Cell. Biol. 5, 3168–82.PubMedGoogle Scholar
  105. Sundaralingam, M., Bergstrom, R., Strasburg, G., Rao, S. T., Roychowdhury, P., Greaser, M. &Wang, B. C. (1985) Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution.Science 227, 945–8.PubMedGoogle Scholar
  106. Sweeney, H. L. &Stull, J. T. (1990) Alteration of cross-bridge kinetics by myosin light chain phosphorylation in rabbit skeletal muscle: implications for regulation of actin-myosin interaction.Proc. Natn. Acad. Sci. U.S.A. 87, 414–18.Google Scholar
  107. Tafuri, S. R., Rushforth, A. M., Kuczmarski, E. R. &Chisolm, R. L. (1989)Dictyostelium discoideum myosin: isolation and characterization of cDNAs encoding the regulatory light chain.Mol. Cell. Biol. 9, 3073–80.PubMedGoogle Scholar
  108. Takagi, T. &Konishi, K. (1983) Amino acid sequence of troponin C obtained from ascidian (Halocynthia roretzi) body wall muscle.J. Biochem. 94, 1753–60.PubMedGoogle Scholar
  109. Takagi, T., Kudoh, S. &Konishi, K. (1986) The amino acid sequence of ascidian (Halocynthia roretzi) myosin light chains.Biochim. Biophys. Acta 874, 318–25.Google Scholar
  110. Takano-Ohmuro, H., Takahashi, S., Hirose, G. &Maruyama, K. (1990) Phosphorylated and dephosphorylated myosin light chains ofDrosophila fly and larva.Com. Biochem. Physiol. 95 B, 171–7.Google Scholar
  111. Tanaka, H., Maita, T., Ojima, T., Nishita, K. &Matsuda, G. (1988) Amino acid sequence of the regulatory light chain of clam foot muscle myosin.J. Biochem. 103, 572–80.PubMedGoogle Scholar
  112. Taubman, M. B., Grant, J. W. &Nadal-Ginard, B. (1987) Cloning and characterization of mammalian myosin regulatory light chain (RLC) cDNA: the RLC gene is expressed in smooth sarcomeric and nonmuscle tissues.J. Cell Biol. 104, 1505–13.PubMedGoogle Scholar
  113. Toffenetti, J., Mischke, D. &Pardue, M. L. (1987) Isolation and characterization of the gene for myosin light chain two ofDrosophila melanogaster.J. Cell Biol. 104, 19–28.PubMedGoogle Scholar
  114. Toyota, N., Shimada, Y. &Bader, D. (1989) Molecular cloning and expression of chicken cardiac troponin C.Circulation Res. 65, 1241–46.PubMedGoogle Scholar
  115. Umegane, T., Maita, T., &Matsuda, G. (1982) Amino-acid sequence of the L-1 light chain of chicken fast skeletalmuscle myosin.Hoppe-Seyler's Z. Physiol. Chem. 363, 1321–30.PubMedGoogle Scholar
  116. Van Eerd, J.-P. &Takahashi, K. (1976) Determination of the complete amino acid sequence of bovine cardiac troponin C.Biochemistry 15, 1171–80.PubMedGoogle Scholar
  117. Van Eerd, J.-P., Capony, J.-P., Ferraz, C. &Pechere, J.-F. (1978) The amino-acid sequence of troponin C from frog skeletal muscle.Eur. J. Biochem. 91, 231–42.PubMedGoogle Scholar
  118. Wade, R. W., Feldman, D., Gunning, P. &Kedes, L. (1989) Sequence and expression of human myosin alkali light chain isoforms.Molec. Cell. Biochem. 87, 119–36.PubMedGoogle Scholar
  119. Walliman, T. &Szent-Gyorgyi, A. G. (1981) An immunological approach to myosin light-chain function in thick filament linked regulation. 2. Effects of anti-scallop myosin lightchain antibodies. Possible regulatory role for the essential light chain.Biochemistry 20, 1188–97.PubMedGoogle Scholar
  120. Walliman, T., Hardwicke, P. M. D. &Szent-Gyorgyi, A. G. (1982) Regulatory and essential light-chain interactions in scallop myosin. II. Photochemical cross-linking of regulatory and essential light-chains by heterobifunctional reagents.J. Molec. Biol. 156, 153–75.PubMedGoogle Scholar
  121. Watanabe, B., Maita, T., Konno, K. &Matsuda, G. (1986) Amino acid sequence of LC-1 light chain of squid mantle muscle myosin.Biol. Chem. Hoppe-Seyler 367, 1025–32.PubMedGoogle Scholar
  122. Weeds, A. G. &Lowey, S. (1971) Substructure of the myosin molecule. II. The light chains of myosin.J. Molec. Biol. 61, 701–25.PubMedGoogle Scholar
  123. Weeds, A. G. (1975) Cyanogen bromide fragments of the cardiac light chain from bovine myosin: evidence for sequence homology with rabbit skeletal myosin alkali light chains.FEBS Letters 59, 203–8.PubMedGoogle Scholar
  124. Weeds, A. G. (1976) Light chains from slow twitch muscle myosin.Eur. J. Biochem. 66, 157–75.PubMedGoogle Scholar
  125. Wilkinson, J. M. (1976) The amino acid sequence of troponin C from chicken skeletal muscle.FEBS Letters 70, 254–6.PubMedGoogle Scholar
  126. Wilkinson, J. M. (1980) Troponin C from rabbit slow skeletal and cardiac muscle is the product of a single gene.Eur. J. Biochem. 103, 179–88.PubMedGoogle Scholar
  127. Winter, B., Klapthor, H., Wiebauer, K., Delius, H. &Arnold, H.-H. (1985) Isolation and characterization of the chicken cardiac myosin light chain (L-2A) gene. Evidence for two additional N-terminal amino acids.J. Biol. Chem. 260, 4478–83.PubMedGoogle Scholar
  128. Wnuk, W. (1984) Regulation of actomyosin ATPase by a single Ca-binding site on troponin C from crayfish.J. Biol. Chem. 259, 9017–23.PubMedGoogle Scholar
  129. Wnuk, W. (1988) Calcium binding to troponin C and the regulation of muscle contraction: a comparative approach. InCalcium and Calcium Binding Proteins (edited byCh. Gerday, L. Bolis &R. Gilles) pp. 44–68. Berlin: Springer-Verlag.Google Scholar
  130. Zimmermann, K. &Starzinski-Powitz, A. (1989) A novel isoform of myosin alkali light chain isolated from human muscle cells.Nucleic Acids Res. 17, 10496.PubMedGoogle Scholar
  131. Zimmermann, K., Kautz, S., Hajdu, G., Winter, D., Whalen, R. G. &Starzinski-Powitz, A. (1990) Heterogenic mRNAs with an identical protein-coding region of the human embryonic myosin alkali light chain in skeletal muscle cells.J. Molec. Biol. 211, 505–13.PubMedGoogle Scholar
  132. Zot, A. S. &Potter, J. D. (1987) Structural aspects of troponintropomyosin regulation of skeletal muscle contraction.Ann. Rev. Biophys. Biophys. Chem. 16, 535–59.Google Scholar
  133. Zot, A. S., Potter, J. D. &Strauss, W. L. (1987) Isolation and sequence of a cDNA clone for rabbit fast sketal muscle troponin C. Homology with calmodulin and parvalbumin.J. Biol. Chem. 262, 15418–21.PubMedGoogle Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • John H. Collins
    • 1
  1. 1.Department of Biological Chemistry, School of Medicine, and Medical Biotechnology Center of the Maryland Biotechnology InstituteUniversity of MarylandBaltimoreUSA

Personalised recommendations