Infection

, Volume 24, Issue 3, pp 218–226 | Cite as

Formation and cultivation ofBorrelia burgdorferi spheroplast-L-form variants

  • Vera Preac Mursic
  • Sylvia Reinhardt
  • Bettina Wilske
  • U. Busch
  • G. Wanner
  • W. Marget
Originalia

Summary

As clinical persistence ofBorrelia burgdorferi in patients with active Lyme borreliosis occurs despite obviously adequate antibiotic therapy,in vitro investigations of morphological variants and atypical forms ofB. burgdorferi were undertaken. In an attempt to learn more about the variation ofB. burgdorferi and the role of atypical forms in Lyme borreliosis, borreliae isolated from antibiotically treated and untreated patients with the clinical diagnosis of definite and probable Lyme borreliosis and from patient specimens contaminated with bacteria were investigated. Furthermore, the degeneration of the isolates during exposure to penicillin Gin vitro was analysed. Morphological analysis by darkfield microscopy and scanning electron microscopy revealed diverse alterations. Persisters isolated from a great number of patients (60–80%) after treatment with antibiotics had an atypical form. The morphological alterations in culture with penicillin G developed gradually and increased with duration of incubation. Pleomorphism, the presence of elongated forms and spherical structures, the inability of cells to replicate, the long period of adaptation to growth in MKP-medium and the mycoplasma-like colonies after growth in solid medium (PMR agar) suggest thatB. burgdorferi produce spheroplast-L-form variants. With regard to the polyphase course of Lyme borreliosis, these forms without cell walls can be a possible reason whyBorrelia survive in the organism for a long time and the cell-wall-dependent antibody titers disappear and emerge after reversion.

Sphäroplasten-L Phase-Varianten vonBorrelia burgdorferi: Morphologische Analyse und Kultivierung

Zusammenfassung

Mit Hilfe von Dunkelfeld- und elektronenmikroskopischer Darstellungen wurden Borrelien-Stämme auf morphologische Varianten untersucht. Es interessierte das Vorkommen und die Bedeutung von atypischen Formen und Sphäroplasten bei antibiotisch behandelten und unbehandelten Patienten mit der klinisch diagnostizierten aktiven Lyme Borreliose bzw. beim Verdacht auf Lyme Borreliose. Ferner untersuchten wir die Zellveränderungen unter Penicillin G-Wirkungin vitro. Die morphologische Analyse zeigte neben der helikalen Form sehr heterogene Veränderungen unter den Borrelien. Die morphologische Veränderung unter Penicillineinwirkung war stark von der Einwirkungszeit abhängig. Die Borrelien-Persister, isoliert von Patienten nach Antibiotikatherapie, zeigten jeweils in großer Zahl (60–80%) atypische Formen. Pleomorphismus, elongierte Zellen und sphäroide Strukturen, Bewegungs- und Vermehrungsunfähigkeit, schlechtes Wachstum im MKP-Medium, sowie Mykoplasmaähnliche Kolonien auf PMR-Agar lassen beiBorrelia burgdorferi die Bildung von Sphäroplasten-L Phase-Varianten vermuten. In Hinblick auf den Krankheitsverlauf der Lyme Borreliose wären diese zellwandfreien Formen eine Möglichkeit für die Borrelien, längere Zeit im Organismus zu überdauern. Die zellwandabhängigen Antikörper können so verschwinden und wieder auftauchen, wenn die Organismen revertieren.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burgdorfer, W., Barbour, A. G., Hayes, S. F., Benach, J. L., Grunwald, E., Davis, J. P. Lyme disease — a tick-borne spirochetosis? Science 216 (1982) 1317–1319.PubMedGoogle Scholar
  2. 2.
    Barbour, A. G., Heiland, R. A., Howe, T. R. Heterogeneity of major proteins in Lyme disease borreliae: a molecular analysis of North American and European isolates. J. Infect. Dis. 152 (1985) 478–484.PubMedGoogle Scholar
  3. 3.
    Marconi, R. T., Garon, C. F. Phylogenetic analysis of the genusBorrelia: a comparison of North American and European isolates ofBorrelia burgdorferi. J. Bacteriol. 174 (1992) 241–244.PubMedGoogle Scholar
  4. 4.
    Wilske B, Preac Mursic, V., Göbel, U. B., Graf, B., Jauris-Heipke, S., Soutschek, E., Schwab, E., Zumstein, G. An OspA serotyping system forBorrelia burgdorferi based on reactivity with monoclonal antibodies and OspA sequence analysis. J. Clin. Microbiol. 31 (1993) 340–350.PubMedGoogle Scholar
  5. 5.
    Wallich, R., Helmes, C., Schaible, U. E., Lobet, Y., Moter, S. E., Kramer, M. D., Simon, M. M. Evaluation of genetic divergence amongBorrelia burgdorferi isolates by use of OspA, fla, HSP60, and HSP70 gene probes. Infect. Immun. 60 (1992) 4856–4866.PubMedGoogle Scholar
  6. 6.
    Belfaiza, J., Postic, D., Bellenger, E., Baranton, G., Girons, I. S. Genomic fingerprinting ofBorrelia burgdorferi sensu lato by pulsedfield gel electrophoresis. J. Clin. Microbiol. 31 (1993) 2873–2877.PubMedGoogle Scholar
  7. 7.
    Marconi, R. T., Garon, C. F. Identification of a third genomic group ofBorrelia burgdorferi through signature nucleotide analysis and 16S rRNA sequence determination. J. Gen. Microbiol. 138 (1992) 533–536.PubMedGoogle Scholar
  8. 8.
    Baranton, G., Postic, D., Saint Girons, I., Boerlin, P., Piffaretti, J.-C., Assous, M., Grimont, P. A. D. Delineation withBorrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int. J. Syst. Bacteriol. 42 (1992) 378–383.PubMedGoogle Scholar
  9. 9.
    Johnson, R. C., Kodner, C. B., Jurkovich, P. J., Collins, J. J. Comparativein vitro andin vivo susceptibilities of the Lyme disease spirocheteBorrelia burgdorferi to cefuroxime and other antimicrobial agents. Antimicrob. Agents Chemother. 34 (1990) 2133–2136.PubMedGoogle Scholar
  10. 10.
    Preac Mursic, V. Antibiotic susceptibility ofBorrelia burgdorferi. In vitro andin vivo. In:Weber, K., Burgdorfer, W. (eds.): Aspects of Lyme borreliosis. Springer, Berlin, Heidelberg, New York 1993, pp. 301–311.Google Scholar
  11. 11.
    Asch, E. S., Bujak, D. J., Weiss, M., Peterson, M. G. E., Weinstein, A. Lyme disease: an infectious and postinfectious syndrome. J. Rheumatol. 21 (1994) 454–461.PubMedGoogle Scholar
  12. 12.
    Dattwyler, R. J., Halperin, J. J. Failure of tetracycline therapy in early Lyme disease. Arthritis Rheum. 30 (1987) 448–450.PubMedGoogle Scholar
  13. 13.
    Pal, G. S., Baker, J. T., Wright, D. J. M. Penicillin-resistantBorrelia encephalitis responding to cefotaxime. Lancet i (1988) 50–51.Google Scholar
  14. 14.
    Liegner, K. B., Shapiro, J., Ramsay, D. R., Halperin, A. J., Hagrefe, W., Kong, L. Recurrent erythema migrans despite extended antibiotic treatment with minocycline in a patient with persistingBorrelia burgdorferi infection, J. Am. Acad. Dermatol. 28 (1993) 312–314.PubMedGoogle Scholar
  15. 15.
    Hassler, D., Zorn, J., Zöller, L., Neuss, M., Weyand, C., Goronzy, Y., Born, J., Preac Mursic, V. Noduläre Panniculitis eine Verlaufsform der Lyme Borreliose? Hautarzt 43 (1992) 134–138.PubMedGoogle Scholar
  16. 16.
    Häupl, T., Hahn, G., Rittig, M., Krause, A., Schoerner, C., Schönherr, U., Kalden, J. R., Burmester, G. R. Persistence ofBorrelia burgdorferi in ligamentous tissue from a patient with chronic Lyme borreliosis. Arthritis Rheum. 36 (1993) 1621–1626.PubMedGoogle Scholar
  17. 17.
    Schmidli, J., Hunziker, T., Moesli, P., Schaad, U. B. Cultivation ofBorrelia burgdorferi from joint fluid three months after treatment of facial palsy due to Lyme borreliosis. J. Infect. Dis. 158 (1988) 905–906.PubMedGoogle Scholar
  18. 18.
    Preac Mursic, V., Weber, K., Pfister, H.-W., Wilske, B., Gross, B., Baumann, A., Prokop, J. Survival ofBorrelia burgdorferi in antibiotically treated patients with Lyme borreliosis. Infection 17 (1989) 355–359.PubMedGoogle Scholar
  19. 19.
    Stanek, G., Klein, J., Bittner, R., Glogar, D. Isolation ofBorrelia burgdorferi from the myocardium of a patient with longstanding cardiomyopathy. N. Engl. J. Med. 322 (1990) 249–252.PubMedGoogle Scholar
  20. 20.
    Preac Mursic, V., Pfister, H.-W., Spiegel, H., Burk, R., Wilske, B., Reinhardt, S., Boehmer, R. First isolation ofBorrelia burgdorferi from an iris biopsy. J. Clin. Neuro. Ophthalmol. 13 (1993) 155–161.Google Scholar
  21. 21.
    Preac Mursic, V., Marget, W., Busch, U., Pleterski Rigler, D., Hagl, S. Kill kinetics ofBorrelia burgdorferi and bacterial findings in relation to the treatment of Lyme borreliosis. Infection 24 (1996) 9–16.PubMedGoogle Scholar
  22. 22.
    Preac Mursic, V., Wilske, B., Schierz, G. EuropeanBorrelia burgdorferi isolated from humans and ticks: culture conditions and antibiotic susceptibility. Zbl. Bakt. Hyg. A 263 (1986) 112–118.Google Scholar
  23. 23.
    Preac Mursic, V., Patsouris, E., Wilske, B., Reinhardt, S., Gross, B., Mehraein, P. Persistence ofBorrelia burgdorferi and histopathological alterations in experimentally infected animals; comparison with histopathological findings in human Lyme disease. Infection 18 (1990) 332–341.PubMedGoogle Scholar
  24. 24.
    Preac Mursic, V., Wilske, B., Reinhardt, S. Culture ofBorrelia burgdorferi on six solid media. Eur. J. Microbiol. Infect Dis. 10 (1991) 1076–1079.Google Scholar
  25. 25.
    Dienes, L., Bullivant, S. Morphology and reproductive processes of the L-forms of bacteria. II: comparative study of L-forms and mycoplasma with the electron microscope. J. Bacteriol. 95 (1968) 672–682.PubMedGoogle Scholar
  26. 26.
    Casjens, S., Huang, W. M. Linear chromosomal physical and genetic map ofBorrelia burgdorferi, the Lyme disease agent. Molec. Microbiol. 8 (1993) 967–980.Google Scholar
  27. 27.
    Brenner, S., Dark, F. A., Gerhardt, P., Jeynes, M. H., Kandler, Kellenberger, E., Klieneberger-Nobel, E., Mc Quillen, K., Rubio Huertos, M., Salton, M. R. J., Strange, R. E., Tomesik, J., Weibull, C. Bacterial protoplasts. Nature 181 (1958) 1713–1716.Google Scholar
  28. 28.
    Park, J. T. Some observations on murein synthesis and the action of penicillin G. Symp. Soc. Gen. Microbiol. 16 (1966) 70.Google Scholar
  29. 29.
    Wittler, R. G. Protoplasts, spheroplasts: a survey ofin vitro andin vivo Studies. In:Guze, L. B. (ed.): Microbial protoplasts, spheroplasts and L-forms. Williams and Wilkins, Baltimore 1968, p. 200.Google Scholar
  30. 30.
    Lederberg, J. Bacterial protoplasts induced by penicillin. Proc. Natl. Acad. Sci. USA 42 (1957) 574.Google Scholar
  31. 31.
    Dolman, C. E., Kerr, D. E., Chang, H., Shearer, A. R. Two cases of a rat-bite fever due toStreptobacillus moniliformis. Can. J. Publ. Health 42 (1951) 228.Google Scholar
  32. 32.
    Nelson, E. L., Pickett, M. J. The recovery of L-forms ofBrucella and their relation toBrucella phage. J. Infect. Dis. 89 (1951) 226.PubMedGoogle Scholar
  33. 33.
    Charache, P. Atypical bacterial forms in human disease. In:Guze, L. B. (ed.): Microbial protoplasts, spheroplasts and L-forms. Williams and Wilkins, Baltimore 1968, p. 484.Google Scholar
  34. 34.
    Barbour, A. G., Hayes, S. F. Biology ofBorrelia species. Microbiol. Rev. 50 (1986) 381–400.PubMedGoogle Scholar
  35. 35.
    Swain, R. H. A. Electron microscopic studies of the morphology of pathogenic spirochaetes. J. Path. Bact. 69 (1955) 117–128.PubMedGoogle Scholar
  36. 36.
    Umemoto, T., Namikawa, I. Electron microscopy of the spherical body of oral spirochetesin vitro. Microbiol. Immunol. 4 (1980) 321–334.Google Scholar
  37. 37.
    Gebbers, J. O., Marder, H. P. Unusualin vitro formation of cyst-like structures associated with human intestinal spirochaetosis. Eur. J. Clin. Microbiol. Infect. Dis. 8 (1989) 302–306.PubMedGoogle Scholar
  38. 38.
    Garon, C. F., Dorward, D. W., Corwin, M. D. Structural features ofBorrelia burgdorferi — the Lyme disease spirochete: silver staining for nucleic acids. Scanning Microsc. (Suppl. 3) (1989) 109–115.Google Scholar
  39. 39.
    Radolf, J. D., Bourell, K. W., Akins, D. R., Brusca, J. S., Norgard, M. V. Analysis ofBorrelia burgdorferi membrane architecture by freeze-fracture electron microscopy. J. Bacteriol. 176 (1994) 21–31.PubMedGoogle Scholar
  40. 40.
    Shoberg, R. J., Thomas, D. D. Specific adherence ofBorrelia burgdorferi extracellular vesicles to human endothelial cells in culture. Infect. Immun. 61 (1993) 3892–3900.PubMedGoogle Scholar
  41. 41.
    Dorward, D. W., Garon, C. F. DNA is packaged within membrane-derived vesicles of gram-negative but not gram-positive bacteria. Appl. Environ. Microbiol. 56 (1990) 1960–1962.Google Scholar
  42. 42.
    Madoff, S., Lawson, J. W. The L-forms of bacteria. In:Balows, A. (ed): The prokaryots. Springer, New York 1992, p. 4068.Google Scholar
  43. 43.
    Hoyer, B. H., King, J. R. Desoxyribonucleic acid sequence losses in a stable streptococcal L-form. J. Bacteriol. 97 (1969) 1516–1517.PubMedGoogle Scholar
  44. 44.
    Bruck, D. K., Talbot, M. L., Cluss, R. G., Boothby, J. T. Ultrastructural characterization of the stages of spheroplast preparation ofBorrelia burgdorferi. J. Microbiol. Methods 23 (1995) 219–228.Google Scholar
  45. 45.
    Kersten, A., Poitschek, C., Rauch, S., Aberer, E. Effects of penicillin, ceftriaxone and doxycycline on morphology ofBorrelia burgdorferi. Antimicrob. Agents Chemother. 39 (1995) 1127–1133.PubMedGoogle Scholar

Copyright information

© MMV Medizin Verlag GmbH München 1996

Authors and Affiliations

  • Vera Preac Mursic
    • 1
  • Sylvia Reinhardt
    • 1
  • Bettina Wilske
    • 1
  • U. Busch
    • 1
  • G. Wanner
    • 2
  • W. Marget
    • 3
  1. 1.Dipl. Biol., Max von Pettenkofer-InstitutLudwig-Maximilians-Universität MünchenMünchen
  2. 2.Botanisches InstitutUniversität MünchenMünchen
  3. 3.KinderklinikUniversität MünchenMünchenGermany

Personalised recommendations