Annali di Matematica Pura ed Applicata

, Volume 148, Issue 1, pp 353–366 | Cite as

H p multipliers on stratified groups

  • Leowede De Michele
  • Giancarlo Mauceri
Article

Summary

In this paper we give a criterion for boundedness on the Hardy spaces for functions M(ℒ) of the sublaplacian ℒ on a stratified group. The criterion requires that the function M satisfies locally a Besov condition. The proof is based on the atomic and molecular characterization of Hardy spaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BS]
    A. Baernstein -E. T. Sawyer,Embedding and multiplier theorems for H p(R n), Memoirs of the Amer. Math. Soc., n. 318 (1985), pp. 1–80.Google Scholar
  2. [C]
    R. R. Coifman,Characterization of Fourier transforms of Hardy spaces, Proc. Nat. Acad. Sci. U.S.A.,71 (1974), pp. 4133–4134.Google Scholar
  3. [CR]
    R. R. Coifman -R. Rochberg,Representation theorems for holomorphic and harmonic functions in L p, Astérisque,77 (1980), pp. 11–66.Google Scholar
  4. [CT]
    A. P. Calderón -A. Torchinsky,Parabolic maximal functions associated with a distribution II, Advances in Math.,24 (1977), pp. 101–171.Google Scholar
  5. [CW]
    R. R. Coifman -G. Weiss,Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc.,83 (1977), pp. 569–645.Google Scholar
  6. [DMM]
    L. De Michele -G. Mauceri,L p-multipliers on the Heisenberg group, Michigan Math. J.,26 (1979), pp. 361–373.Google Scholar
  7. [FS]
    G. B. Folland -E. M. Stein,Hardy spaces on homogeneous groups, Mathematical Notes 28, Princeton University Press, Princeton, N.J. (1982).Google Scholar
  8. [Gu]
    Y. Guivarch,Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France,101 (1973), pp. 333–379.Google Scholar
  9. [He]
    H. L. Hemler,The molecular theory of H p,q,s(H n), Ph. D. Dissertation, Washington University, St. Louis (1980).Google Scholar
  10. [H1]
    A. Hulanicki,Subalgebra of L 1(G) associated with the Laplacian on a Lie group, Coll. Math.,31 (1974), pp. 259–278.Google Scholar
  11. [H2]
    A. Hulanicki,Commutative subalgebra of L 1(G) associated with a subelliptic operator on a Lie group G, Bull. Amer. Math. Soc.,81 (1975), pp. 121–124.Google Scholar
  12. [HJ]
    A. Hulanicki -J. W. Jenkins,Almost everywhere summability on nilmanifolds, Trans. Amer. Math. Soc.,278 (1983), pp. 703–715.Google Scholar
  13. [M1]
    G. Mauceri,Zonal multipliers on the Heisenberg group, Pacific J. of Math.,95 (1981), pp. 143–159.Google Scholar
  14. [M2]
    G.Mauceri,Maximal operators and Riesz means on stratified groups, to appear in Symp. Math.Google Scholar
  15. [Mi]
    A. Miyachi,On some Fourier multipliers for H p(R p), J. Fac. Sci. Univ. Tokyo,27 (1980), pp. 157–179.Google Scholar
  16. [TW]
    M. H. Taibleson -G. Weiss,The molecular characterization of certain Hardy spaces, Astérique,77 (1980), pp. 67–149.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Aplicata 1987

Authors and Affiliations

  • Leowede De Michele
    • 1
  • Giancarlo Mauceri
    • 2
  1. 1.Dipartimento di MatematicaUniversità di MilanoMilanoItaly
  2. 2.Istituto di MatematicaUniversità di GenovaGenovaItaly

Personalised recommendations