Annali di Matematica Pura ed Applicata

, Volume 148, Issue 1, pp 353–366 | Cite as

H p multipliers on stratified groups

  • Leowede De Michele
  • Giancarlo Mauceri


In this paper we give a criterion for boundedness on the Hardy spaces for functions M(ℒ) of the sublaplacian ℒ on a stratified group. The criterion requires that the function M satisfies locally a Besov condition. The proof is based on the atomic and molecular characterization of Hardy spaces.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BS]
    A. Baernstein -E. T. Sawyer,Embedding and multiplier theorems for H p(R n), Memoirs of the Amer. Math. Soc., n. 318 (1985), pp. 1–80.Google Scholar
  2. [C]
    R. R. Coifman,Characterization of Fourier transforms of Hardy spaces, Proc. Nat. Acad. Sci. U.S.A.,71 (1974), pp. 4133–4134.Google Scholar
  3. [CR]
    R. R. Coifman -R. Rochberg,Representation theorems for holomorphic and harmonic functions in L p, Astérisque,77 (1980), pp. 11–66.Google Scholar
  4. [CT]
    A. P. Calderón -A. Torchinsky,Parabolic maximal functions associated with a distribution II, Advances in Math.,24 (1977), pp. 101–171.Google Scholar
  5. [CW]
    R. R. Coifman -G. Weiss,Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc.,83 (1977), pp. 569–645.Google Scholar
  6. [DMM]
    L. De Michele -G. Mauceri,L p-multipliers on the Heisenberg group, Michigan Math. J.,26 (1979), pp. 361–373.Google Scholar
  7. [FS]
    G. B. Folland -E. M. Stein,Hardy spaces on homogeneous groups, Mathematical Notes 28, Princeton University Press, Princeton, N.J. (1982).Google Scholar
  8. [Gu]
    Y. Guivarch,Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France,101 (1973), pp. 333–379.Google Scholar
  9. [He]
    H. L. Hemler,The molecular theory of H p,q,s(H n), Ph. D. Dissertation, Washington University, St. Louis (1980).Google Scholar
  10. [H1]
    A. Hulanicki,Subalgebra of L 1(G) associated with the Laplacian on a Lie group, Coll. Math.,31 (1974), pp. 259–278.Google Scholar
  11. [H2]
    A. Hulanicki,Commutative subalgebra of L 1(G) associated with a subelliptic operator on a Lie group G, Bull. Amer. Math. Soc.,81 (1975), pp. 121–124.Google Scholar
  12. [HJ]
    A. Hulanicki -J. W. Jenkins,Almost everywhere summability on nilmanifolds, Trans. Amer. Math. Soc.,278 (1983), pp. 703–715.Google Scholar
  13. [M1]
    G. Mauceri,Zonal multipliers on the Heisenberg group, Pacific J. of Math.,95 (1981), pp. 143–159.Google Scholar
  14. [M2]
    G.Mauceri,Maximal operators and Riesz means on stratified groups, to appear in Symp. Math.Google Scholar
  15. [Mi]
    A. Miyachi,On some Fourier multipliers for H p(R p), J. Fac. Sci. Univ. Tokyo,27 (1980), pp. 157–179.Google Scholar
  16. [TW]
    M. H. Taibleson -G. Weiss,The molecular characterization of certain Hardy spaces, Astérique,77 (1980), pp. 67–149.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Aplicata 1987

Authors and Affiliations

  • Leowede De Michele
    • 1
  • Giancarlo Mauceri
    • 2
  1. 1.Dipartimento di MatematicaUniversità di MilanoMilanoItaly
  2. 2.Istituto di MatematicaUniversità di GenovaGenovaItaly

Personalised recommendations