## Summary

We solve explicitly the Jacobi equation on a Sasakian space form and use the solutions to consider explicit formulas for the volume of a geodesic sphere and the volume of a tube about a curve in such a manifold. We obtain some generalizations of H. Weyl's result on the volume of tubes.

## References

- [1]
A. L. Besse,

*Manifolds all of whose geodesics are closed*, Ergebnisse der Mathematik,**93**, Springer-Verlag, Berlin-Heidelberg-New York, 1978. - [2]
D. E. Blair,

*Contact manifolds in Riemannian geometry*, Lecture Notes in Mathematics,**509**, Springer-Verlag, Berlin-Heidelberg-New York, 1976. - [3]
D. E.Blair - L.Vanhecke,

*Geodesic spheres and Jacobi vector fields on Sasakian space forms*, to appear in Proc. Roy. Soc. Ddinburgh Sect. A. - [4]
B. Y. Chen -L. Vanhecke,

*Differential geometry of geodesic spheres*, J. Reine Angew. Math.,**325**(1981), pp. 28–67. - [5]
L. Gheysens -L. Vanhecke,

*Total scalar curvature of tubes about curves*, Math. Nachr.,**103**(1981), pp. 177–197. - [6]
A. Gray,

*The volume of a small geodesic ball in a Riemannian manifold*, Michigan Math. J.,**20**(1973), pp. 329–344. - [7]
A. Gray -L. Vanhecke,

*Riemannian geometry as determined by the volumes of small geodesic balls*, Acta Math.,**142**(1979), pp. 157–198. - [8]
A. Gray -L. Vanhecke,

*The volumes of tubes about curves in a Riemannian manifold*, Proc. London Math. Soc.,**44**(1982), pp. 215–243. - [9]
A. Gray -L. Vanhecke,

*The volumes of tubes in a Riemannian manifold*, Rend. Sem. Mat. Univ. e Politec. Torino,**39**(1981), pp. 1–50. - [10]
O. Kowalski -L. Vanhecke,

*G-deformations of curves and volumes of tubes in Riemannian manifolds*, Geometriae Dedicata,**15**(1983), pp. 125–135. - [11]
O. Kowalski -L. Vanhecke,

*G-deformations and some generalizations of H. Weyl's tube theorem*, Trans. Amer. Math. Soc.,**294**(1986), pp. 799–811. - [12]
T. Takahashi,

*Sasakian ϕ-symmetric spaces*, Tôhoku Math. J.,**29**(1977), pp. 91–113. - [13]
S. Tanno,

*Sasakian manifolds with constant ϕ-holomorphic sectional curvature*, Tôhoku Math. J.,**21**(1969), pp. 501–507. - [14]
L. Vanhecke,

*G-deformations and Weyl's tube theorem*, Differential Geometry, Research Notes in Mathematics,**131**, Pitman, London (1985), pp. 121–137. - [15]
L. Vanhecke -T. J. Willmore,

*Interaction of tubes and spheres*, Math. Ann.,**263**(1983), pp. 31–42. - [16]
Y. Watanabe,

*Geodesic symmetries in Sasakian locally ϕ-symmetric spaces*, Ködai Math. J.,**3**(1980), pp. 48–55. - [17]
H. Weyl,

*On the volumes of tubes*, Amer. J. Math.,**61**(1939), pp. 461–472. - [18]
K. Yano -M. Kon,

*Structures on manifolds*, Series in Pure Mathematics,**3**, World Scientific Publ. Co., Singapore, 1984.

## Author information

### Affiliations

## Rights and permissions

## About this article

### Cite this article

Blair, D.E., Vanhecke, L. Jacobi vector fields and the volume of tubes about curves in Sasakian space forms.
*Annali di Matematica pura ed applicata* **148, **41–49 (1987). https://doi.org/10.1007/BF01774282

Received:

Issue Date:

### Keywords

- Vector Field
- Explicit Formula
- Space Form
- Jacobi Equation
- Geodesic Sphere