Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the stationary, compressible and incompressible navier-stokes equations


In this paper we study the system (1.1), (1.3) which describes the stationary motion of a given amount of a compressible heat conducting, viscous fluid in a bounded domain Ω of Rn, n⩾2, and we consider the incompressible limit of the solutions of that system of equations (for barotropic flows) as the Mach number becomes small.


  1. [1]

    R. A. Adams,Sobolev Spaces, Academic Press, New York-San Francisco-London (1975).

  2. [2]

    H.Beirão da Veiga,Stationary motions and the incompressible limit for compressible viscous fluids, MRC Technical Summary Report # 2883, Mathematics Research Center, University of Wisconsin-Madison (1985), to appear in the «Houston Journal of Mathematics».

  3. [3]

    H. Beirão da Veiga,An L p-theory for the n-dimensional, stationary, compressible NavierStokes equations, and the incompressible limit for compressible fluids. The equilibrium solution, Comm. Math. Phys.,109, 2 (1987), pp. 229–248.

  4. [4]

    H.Beirão da Veiga,On the incompressible limit of the compressible Navier-Stokes equations, Conference at the meeting «Calculus of variations and Partial Differential Equations», in honour of Prof. Hans Lewy, Trento, May 1986.

  5. [5]

    D. Fujiwava -H. Movimato,An L p-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, Sect. I-A,24 (1977), pp. 685–700.

  6. [6]

    S. Klainerman -A. Majda,Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit for compressible fluids, Comm. Pure Appl. Math.,34 (1981), pp. 481–524.

  7. [7]

    A. Majda,Smooth solutions for the equations of compressible and incompressible fluid flow, inFluid Dynamics, edited by H. Beirão da Veiga, Lecture Notes in Mathematics, vol. 1047, Springer-Verlag, Berlin-Heidelberg (1984).

  8. [8]

    S. Schochet,The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit, Comm. Math. Phys.,104, 1 (1986), pp. 49–75.

  9. [9]

    J. Serrin,Mathematical principles of classical fluid mechanics, Handbuch der Physik, Bd. VIII/1, Springer-Verlag, Berlin-Göttingen-Heidelberg (1959).

  10. [10]

    A.Valli,Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Sc. Normale Sup. Pisa (1984), pp. 607–647.

  11. [11]

    A. Valli,On the existence of stationary solutions to compressible Navier-Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire,4 (1987), pp. 99–113.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Defranceschi, A. On the stationary, compressible and incompressible navier-stokes equations. Annali di Matematica pura ed applicata 149, 217–236 (1987).

Download citation


  • Heat Conducting
  • Mach Number
  • Bounded Domain
  • Viscous Fluid
  • Stationary Motion