International Journal of Game Theory

, Volume 15, Issue 4, pp 237–250 | Cite as

The minmax theorem for U.S.C.-L.S.C. payoff functions

  • J. -F. Mertens
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For general reference in mathematics, the reader may want to consult Halmos (1950), Kelley (1955) and Kelley and Namioka (1963); and on minmax theorems, Parthasarathy and Raghavan (1971).Google Scholar
  2. Aumann RJ (1964) Mixed and behavioural strategies in infinite extensive games. In: Dresher, Shapley, Tucker (eds), pp 627–650Google Scholar
  3. Bourbaki N (1959) Eléments de mathematique, Livre VI: Intégration, Ch. VI: Intégration vectorielle. Hermann, ParisGoogle Scholar
  4. Dresher M, Tucker AW, Wolfe P (eds) (1957) Contributions to the theory of games III (Annals of Mathematical Studies, vol 39). Princeton University Press, Princeton, New JerseyGoogle Scholar
  5. Dresher M, Shapley LS, Tucker AW (eds) (1964) Advances in game theory (Annals of Mathematical Studies, vol 52). Princeton University Press, Princeton, New JerseyGoogle Scholar
  6. Dubins L, Savage LJ (1965) How to gamble if you must. MacGraw Hill, New YorkGoogle Scholar
  7. Grothendieck A (1952) Critères de compacité dans les espaces fonctionnels généraux. American Journal of Mathematics 74:168–186Google Scholar
  8. Grothendieck A (1953) Sur less applications linéaires faiblement compactes d'espaces de type C(K). Canadian Journal of Mathematics 5:129–173Google Scholar
  9. Halmos PR (1950) Measure theory. Van Nostrand, New YorkGoogle Scholar
  10. Karlin S (1950) Operator treatment of the minmax principle, I. In: Kuhn HW, Tucker AW (eds), pp 133–154Google Scholar
  11. Karlin S (1959) Mathematical methods and theory in games, programming and economics, vol II. Addison-WesleyGoogle Scholar
  12. Kelley JL (1955) General topology. Van Nostrand, New YorkGoogle Scholar
  13. Kelley JL, Namioka I, et al (1963) Linear topological spaces. Van Nostrand, New YorkGoogle Scholar
  14. Kneser H (1952) Sur un théorème fondamental de la théorie des jeux. Comptes Rendus de l'Académie des Sciences 234:2418–2420Google Scholar
  15. Kuhn HW, Tucker AW (eds) (1950) Contributions to the theory of games, I (Ann Math Studies, vol 24). Princeton University Press, Princeton, New JerseyGoogle Scholar
  16. Nikaido H (1954) On von Neumann's minimax theorem. Pacific Journal of Mathematics 4:65–72Google Scholar
  17. Parthasarathy T, Raghavan TES (1971) Some topics in two-person games. American Elsevier Publishing Company, New YorkGoogle Scholar
  18. Restrepo R (1957) Tactical problems involving several actions. In: Dresher, Tucker, Wolfe (eds), pp 313–337Google Scholar
  19. Sion M (1958) On general minimax theorems. Pacific Journal of Mathematics 8:171–176Google Scholar
  20. Sion M, Wolfe P (1957) On a game without a value. In: Dresher, Tucker, Wolfe (eds), pp 299–305Google Scholar
  21. Teh Tjoe-Tie (1963) Minmax theorems on conditionally compact sets. Annals of Mathematical Statistics 34:1536–1540Google Scholar
  22. Wald A (1945) Generalization of a theorem by von Neumann concerning zero-sum two-person games. Annals of Mathematics 46:281–286Google Scholar
  23. Wald A (1950) Note on zero-sum two-person games. Annals of Mathematics 52:739–742Google Scholar
  24. Waternaux C (1983) Minmax and maxmin of repeated games without a recursive structure. CORE Discussion Paper 8313, Université Catholique de LouvainGoogle Scholar
  25. Yanovskaya EB (1964) Minimax theorems for games on the unit square. Theory of Probability and its Applications 9:500–502Google Scholar

Copyright information

© Physica-Verlag 1986

Authors and Affiliations

  • J. -F. Mertens
    • 1
  1. 1.CORELouvain La NeuveBelgium

Personalised recommendations