International Journal of Game Theory

, Volume 15, Issue 1, pp 31–57 | Cite as

Non-cooperative two-person games in biology: A classification

  • Immanuel M. Bomze
Article

Abstract

This article compares evolutionary equilibrium notions with solution concepts in rational game theory. Both static and dynamic evolutionary game theory are treated. The methods employed by dynamic theory, so-called “game dynamics”, could be discovered to be relevant for rational game theory also.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abakuks A (1980) Conditions for evolutionary stable strategies. J Appl Prob 17:559–562Google Scholar
  2. Aigner M (1979) Combinatorial theory. Springer, Berlin Heidelberg New York (Grundl d math Wiss i Einzeld Bd 234)Google Scholar
  3. Akin E (1980) Domination or equilibrium. Math Biosci 50:239–250Google Scholar
  4. Akin E, Hofbauer J (1982) Recurrence of the unfit. Math Biosci 61:51–63Google Scholar
  5. Auslander D, Guckenheimer J, Oster G (1978) Random evolutionarily stable strategies. Theor Pop Biol 13:276–293Google Scholar
  6. Axelrod R (1981) The emergence of cooperation among egoists. Am political Sci Rev 75:306–318Google Scholar
  7. Bishop DT, Cannings C (1976) Models of animal conflicts. Adv Appl Prob 6:616–621Google Scholar
  8. Bishop DT, Cannings D (1978) A generalized war of attrition. J theor Biol 70:85–124Google Scholar
  9. Bomze IM (1983) Lotka-Volterra equation and replicator dynamics: a two-dimensional classification. Biol Cybern 48:201–211Google Scholar
  10. Bomze IM, Schuster P, Sigmund K (1983) The role of Mendelian genetics in strategic models on animal conflicts. J theor Biol 101:19–38Google Scholar
  11. Brown JS, Sanderson MJ, Michod RE (1982) Evolution of social behaviour by reciprocation. J theor Biol 99:319–339Google Scholar
  12. Van Damme EEC (1983) Refinements of the Nash equilibrium concept. Springer, Berlin Heidelberg New York (Lecture Notes in Economics and Mathematical Systems, vol 219)Google Scholar
  13. Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, OxfordGoogle Scholar
  14. Hamilton WD (1967) Extraordinary sex ratios. Science, Wash. 156:477–488Google Scholar
  15. Harsanyi JC (1973a) Games with randomly disturbed payoffs: a new rationale for mixed strategy equilibrium points. Int J Game Theory 2:1–23Google Scholar
  16. Harsanyi JC (1973b) Oddness of the number of equilibrium points: a new proof. Int J Game Theory 2:235–250Google Scholar
  17. Hines WGS (1980) An evolutionarily stable strategy model for randomly mating diploid populations. J theor Biol 87:379–384Google Scholar
  18. Hines WGS (1982) Strategy stability in complex randomly mating diploid populations. J Appl Prob 19:653–659Google Scholar
  19. Hofbauer J (1981) On the occurrence of limit cycles in the Volterra-Lotka differential equation. J Nonlinear Anal 5:1003–1007Google Scholar
  20. Hofbauer J (1984) A difference equation model for the hypercycle. Siam J Appl Math 44:762–772Google Scholar
  21. Hofbauer J, Sigmund K (1984) Evolutionstheorie und dynamische Systeme. Mathematische Aspekte der Selektion. Paul Parey, Berlin HamburgGoogle Scholar
  22. Hofbauer J, Schuster P, Sigmund K (1979) A note on evolutionary stable strategies and game dynamics. J theor Biol 81:609–612Google Scholar
  23. Hofbauer J, Schuster P, Sigmund K (1982) Game dynamics in Mendelian populations. Biol Cybern 43:51–57Google Scholar
  24. Hofbauer J, Schuster P, Sigmund K, Wolff R (1980) Dynamical systems under constant organisation II: Homogeneous growth functions of degreep=2. Siam J Appl Math C38:282–304Google Scholar
  25. Losert V, Akin E (1983) Dynamics of games and genes: discrete versus continuous time. J Math Biol 17:241–251Google Scholar
  26. Maynard Smith J (1981) Will a sexual population evolve to anESS? Am Nat 117:1015–1018Google Scholar
  27. Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, CambridgeGoogle Scholar
  28. Maynard Smith J, Price GR (1973) The logic of animal conflict. Nature, Lond 246:15–18Google Scholar
  29. Myerson RB (1978) Refinements of the Nash equilibrium concept. Int J Game Theory 7:73–80Google Scholar
  30. Nash JF (1951) Non-cooperative games. Ann of Math 54:286–295Google Scholar
  31. Norman MF (1981) Sociobiological variations on a Mendelian theme. In: Grossberg S (ed) Mathematical Psychology and Psychophysiology. SIAM-AMS Proceedings, vol 13:187–196Google Scholar
  32. Okada A (1981) On stability of perfect equilibrium points. Int J Game Theory 10:67–73Google Scholar
  33. Parthasarathy T, Raghavan TES (1971) Some topics in two-person games. In: Bellman R (ed) Modern analytic and computational methods in science and mathematics, vol 22. American Elsevier, New YorkGoogle Scholar
  34. Riechert SE, Hammerstein P (1983) Game theory in the ecological context. Ann Rev Ecol Syst 14:377–409Google Scholar
  35. Rothstein SI (1980) Reciprocal altruism and kin selection are not clearly separable phenomena. J theor Biol 87:255–261Google Scholar
  36. Schuster P, Sigmund K (1981) Coyness, philandering and stable strategies. Anim Behav 29:186–192Google Scholar
  37. Schuster P, Sigmund K (1983) Replicator dynamics. J theor Biol 100:533–538Google Scholar
  38. Schuster P, Sigmund K, Wolff R (1978) Dynamical systems under constant organization I: Topological analysis of a family of non-linear differential equations. Bull Math Biophys 40:743–769Google Scholar
  39. Schuster P, Sigmund K, Hofbauer J, Wolff R (1981a) Selfregulation of behaviour in animal societies I: Symmetric contests. Biol Cybern 40:1–8Google Scholar
  40. Schuster P, Sigmund K, Hofbauer J, Wolff R (1981b) Selfregulation of behaviour in animal societies II: Games between two populations without selfinteraction. Biol Cybern 40:9–15Google Scholar
  41. Schuster P, Sigmund K, Hofbauer J, Wolff R, Gottlieb R, Merz P (1981c) Selfregulation of behaviour in animal societies III: Games between two populations with selfinteraction. Biol Cybern 40:17–25Google Scholar
  42. Taylor PD (1979) Evolutionarily stable strategies with two types of player. J Appl Prob 16:76–83Google Scholar
  43. Treisman M (1977) The evolutionary restriction of aggression within a species: a game theory analysis. J Math Psychol 16:167–203Google Scholar
  44. Trivers RL (1971) The evolution of reciprocal altruism. Q Rev Biol 46:35–57Google Scholar
  45. Wu Wen-Tsün, Jiang Jia-He (1962) Essential equilibrium points ofn-person non-cooperative games. Sci Sinica 11:1370–1372Google Scholar
  46. Zeeman EC (1980) Population dynamics from game theory. In: Global theory of dynamical systems. Nitecki Z, Robinson C (eds) Springer, Berlin Heidelberg New York (Lecture Notes in Mathematics vol 819)Google Scholar
  47. Zeeman EC (1981) Dynamics of the evolution of animal conflicts. J theor Biol 89:249–270Google Scholar

Copyright information

© Physica-Verlag 1986

Authors and Affiliations

  • Immanuel M. Bomze
    • 1
  1. 1.Institut für Statistik und Informatik an der UniversitÄt WienWienAustria

Personalised recommendations