International Journal of Game Theory

, Volume 8, Issue 2, pp 81–107 | Cite as

Two and three person games: A local study

  • H. Moulin
Papers

Abstract

Using the tools of differential geometry two-person games in normal form and their “ordinary” points, i.e. the points which are not equilibria in any sense, are studied. The concept of reversibility if defined and characterized in terms of the derivatives of the payoff functions. Reversible points appear as those points at which the behavior may become cooperative. In the second part of the paper, three-person games in normal form are considered. All the concepts defined depend only on the preference preorderings associated with the payoff functions and do not depend on the metric of the strategy spaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berliocchi, H., andJ.M. Lasry: Intégrandes normales et mesures paramétrées. Bulletin de la Société Mathématique de France2, 1973.Google Scholar
  2. Ekeland, I.: Topologie différentielle et théorie des jeux. To appear in Topology, 1974.Google Scholar
  3. Levine, H.: Singularities of Differentiable Mappings. Bonn 1959.Google Scholar
  4. Moulin, H.: Rationalité locale d'un jeu régulier. Compte-Rendus de l'Académie des Sciences de Paris 279, Série A, 1974a, p. 73.Google Scholar
  5. —: Rationalité et irrationalité d'un jeu dont les fonctions d'utilité sont linéaires. Compte-Rendus de l'Académie des Sciences de Paris 279, Série A, 1974b, p. 29.Google Scholar
  6. Smale, S.: Global Analysis and Economics. Pareto Optimum and a Generalization of Morse Theory. 1973.Google Scholar
  7. Thom, R.: Morphogenèse et stabilité structurelle. New York 1973.Google Scholar

Copyright information

© Physica-Verlag 1979

Authors and Affiliations

  • H. Moulin
    • 1
  1. 1.Center for Operations Research and EconometricsUniversité Catholique de LouvainLouvain-La-Neuve

Personalised recommendations