Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

ℤ-Graded Trigonometric Lie subalgebras in\(\hat A_\infty ,\hat B_\infty ,\hat C_\infty \), and\(\hat D_\infty \) and their vertex operator representationsand their vertex operator representations

  • 51 Accesses

  • 2 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. Fairlie, P. Fletcher, and C. Zachos, “Trigonometric structure constants for new infinite-dimensional algebras,” Phys. Lett. B,218, No. 2, 203–206 (1989).

  2. 2.

    M. V. Saveliev and A. M. Vershik, “Continual analogs of contragredient Lie algebras,” Comm. Math. Phys.,126, No. 2, 367–378 (1989).

  3. 3.

    M. V. Saveliev and A. M. Vershik, “New examples of continuum graded Lie algebras,” Phys. Lett. A,143, 121–128 (1990).

  4. 4.

    D. Lebedev, A. Orlov, S. Pakuliak, and A. Zabrodin, “Nonlocal integrable equations of the Toda hierarchy,” Phys. Lett. A,160, 166–172 (1991).

  5. 5.

    D. Lebedev and S. Pakuliak, “Zakharov—Shabat technique with quantized spectral parameter in the theory of integrable models,” Phys. Lett. A,160, 173–178 (1991).

  6. 6.

    J. Hoppe, M. Olshanetsky, and S. Theisen, “Dynamical systems on trigonometric algebras,” Preprint KA—THEP—10/91.

  7. 7.

    E. G. Floratos, “Spin wedge and vertex operators representations of trigonometric algebras and their central extensions,” Phys. Lett. B,232, 467–474 (1989).

  8. 8.

    M. I. Golenishcheva-Kutuzova and D. R. Lebedev, “Vertex operator representation of the Weil—Moyal—Ferli sine algebra,” Pis'ma Zh. Èksp. Teor. Fiz.,52, No. 10, 1164–1167 (1990).

  9. 9.

    V. Kac, Infinite-Dimensional Lie Algebras, Cambridge Univ. Press, Cambridge (1991).

  10. 10.

    V. Kac, D. Kazhdan, J. Lepowsky, and R. Wilson, “Realization of the basic representation of the Euclidean Lie algebras,” Adv. Math.,42, 83–112 (1981).

  11. 11.

    A. Connes and M. Rieffel, “Yang—Mills for noncommutative two tori,” Contemp. Math.,62, 237–266 (1978).

  12. 12.

    A. Connes, “Noncommutative differential geometry,” Publ. Math., Paris,62, 41–144 (1985).

  13. 13.

    I. V. Frenkel and N. Jing, “Vertex representations of quantum affine algebras,” Proc. Natl. Acad. Sci. USA,85, 9373–9377 (1988).

  14. 14.

    M. I. Golenishcheva-Kutuzova and D. R. Lebedev, “Trigonometric Lie subalgebras in\(\overline X _\infty = \overline A _\infty \) (resp.\(\overline B _\infty ,\overline C _\infty ,\overline D _\infty \)) and their vertex operator representations,” Pis'ma Zh. Èksp. Teor. Fiz.,52, No. 8, 473–476 (1991).

  15. 15.

    J. Hoppe, “Diff A T 2 and the curvature of some infinite-dimensional manifolds,” Phys. Lett. B,215, 706–710 (1988).

  16. 16.

    A. M. Vershik, “Continuum roots system Lie algebras,” in preparation.

Download references

Additional information

International Institute for Nonlinear Studies, Institute for Theoretical Physics, RAN. Institute for Theoretical and Experimental Physics. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 27, No. 1, pp. 12–24, January–March 1993.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Golenishcheva-Kutuzova, M.I., Lebedev, D.R. ℤ-Graded Trigonometric Lie subalgebras in\(\hat A_\infty ,\hat B_\infty ,\hat C_\infty \), and\(\hat D_\infty \) and their vertex operator representationsand their vertex operator representations. Funct Anal Its Appl 27, 10–20 (1993). https://doi.org/10.1007/BF01768663

Download citation

Keywords

  • Functional Analysis
  • Operator Representation
  • Vertex Operator
  • Vertex Operator Representation