Advertisement

Journal of Muscle Research & Cell Motility

, Volume 11, Issue 2, pp 125–136 | Cite as

Z-band proteins in the flight muscle and leg muscle of the honeybee

  • Judith D. Saide
  • Stephen Chin-Bow
  • Judith Hogan-Sheldon
  • Lizette Busquets-Turner
Papers

Summary

Monoclonal antibodies (mAb's) have been raised against proteins in preparations of Z-discs isolated from honeybee fibrillar flight muscle. These antibodies have identified four Z-disc antigens on immunoblots of honeybee fibrillar proteins. Antibody

α binds to the 90–100 kD protein,α-actinin; mAb P interacts with the protein, projectin, an extremely large polypeptide (>600kD) found in the connecting filaments which link thick filaments to the Z-band in insect asynchronous flight muscle. Two other mAb's recognize previously uncharacterized insect Z-band proteins. Monoclonal antibody Z(400) binds to a pair of proteins with molecular masses near 400 kD and 600 kD. Antibody Z(175) recognizes two components, 158 kD and 175 kD, that are not only immunologically similar but have nearly identical peptide maps. Indirect immunofluorescence microscopy studies show that the proteins recognized by mAb'sα, Z(175) and Z(400) are located at the Z-band, while the mAb P antigen is found on either side of it.

Three of the four antibodies we have obtained recognize leg muscle proteins. Monoclonal antibodiesα and P comigrate on SDS gels with analogous components from flight muscle. Only the smaller of the two proteins identified in flight muscle by mAb Z(400) is found in leg muscle, however. Furthermore, no Z(175) antigens have been detected in the non-fibrillar tissue by either monoclonal or polyclonal antibodies. Immunofluorescence microscopy studies localize the a and Z(400) antigens at the Z-line in leg muscle fibrils. Surprisingly, however, mAb P binds within the A-bands of synchronous fibres, not between the A- and Z-bands as in asynchronous fibrillar muscle.

Keywords

Polypeptide Fibril Muscle Protein Indirect Immunofluorescence Flight Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashhurst, D. E. (1977) The Z-line: Its structure and evidence for the presence of connecting filaments. InInsect Flight Muscle (edited byTregear, R. T.), pp. 57–73. Amsterdam: North Holland Publishing Company.Google Scholar
  2. Auber, J. &Couteaux, R. (1962) L'attache des myofilaments secondaires au niveau de la strie Z dans les muscle de Dipteres.C.R.H. Acad. Sci. 254, 3425–6.Google Scholar
  3. Auber, J. &Couteaux, R. (1963) Ultrastructure of the Z-band in muscles of the Diptera.J. Microscopie 2, 309–24.Google Scholar
  4. Briskey, E. J., Seraydarian, K. &Mommaerts, W. F. H. M. (1967) The modification of actomyosin byα-actinin. III. The interaction betweenα-actinin and actin.Biochim. et Biophys. Acta 133, 424–34.Google Scholar
  5. Bullard, B. &Sainsbury, G. M. (1977) The proteins in the Z-line of insect flight muscle.Biochem. J. 161, 399–403.PubMedGoogle Scholar
  6. Candia Carnevali, M. D., De Equileor, M. &Valvassori, R. (1980) Z-line morphology of functionally diverse insect skeletal muscles.J. Submicroscop. Cytol. 12, 427–46.Google Scholar
  7. Cleveland, D. W., Fisher, S. G., Kirschner, M. W. &Laemmli, U. K. (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulphate and analysis by gel electrophoresis.J. Biol. Chem. 252, 1102–6.PubMedGoogle Scholar
  8. Ebashi, S., Ebashi, F. &Maruyama, K. (1964) A new protein factor promoting contraction of actomyosin.Nature 203, 645–6.PubMedGoogle Scholar
  9. Eckhardt, A. E., Hayes, C. E. &Goldstein, I. J. (1976) A sensitive fluorescent method for the detection of glyocoproteins in polyacrylamide gels.Anal. Biochem. 73, 192–7.PubMedGoogle Scholar
  10. Endo, T. &Masaki, T. (1982) Molecular properties and functionsin vitro of chicken smooth muscleα-actinin in comparison with those of striated muscle alphaactinins.J. Biochem (Tokyo) 92, 1457–68.Google Scholar
  11. Ericson, S. G. (1987) Identification and characterization of an alpha-actinin like protein from honeybee indirect flight muscle. Ph.D. Thesis, Boston University.Google Scholar
  12. Fairbanks, G., Steck, T. L. &Wallach, D. F. H. (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane.Biochem. 2606–17.Google Scholar
  13. Francis, G. R. &Waterston, R. H. (1985) Muscle organization inCaenorhabditis elegans: Localization of proteins implicated in thin filament attachment and I-band organization.J. Cell. Biol. 101, 1532–49.PubMedGoogle Scholar
  14. Fujita, S. C., Inoue, H., Yoshioka, T. &Hotta, Y. (1987) Quantitative tissue isolation fromDrosophila freeze dried in acetone.Biochem. J. 243, 97–104.PubMedGoogle Scholar
  15. Furst, D. O., Osborne, M., Nave, R., &Weber, K. (1988) The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: A map of ten nonrepetitive epitopes starting at the Z-line extends close to the M-line.J. Cell. Biol. 106, 1563–72.PubMedGoogle Scholar
  16. Garamvolgyi, N., Metzger-Torok, G. &Tigyi-Sebe, S. A. (1962) The Z- and M-formations of striated muscle.Acta Physiol. Acad. Sci. Hung. 22, 223–33.PubMedGoogle Scholar
  17. Hammond, K. S. &Goll, D. E. (1975) Purification of insect myosin andα-actinin.Biochem. J. 151, 189–192.PubMedGoogle Scholar
  18. Hawkes, R., Neiday, E. &Gordon, J. (1982) A dot-immunobinding assay for monoclonal and other antibodies.Anal. Biochem. 119, 142–7.PubMedGoogle Scholar
  19. Horowitz, R. &Podolsky, R. J. (1987) The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: Evidence for the role of titin filaments.J. Cell. Biol. 105, 2217–23.PubMedGoogle Scholar
  20. Jockusch, B. M. &Isenberg, G. (1981) Interaction ofα-actinin and vinculin with actin: Opposite effects on filament network formation.Proc.Natl. Acad. Sci., USA 78, 3005–9.Google Scholar
  21. Kobayashi, R., Itoh, H. &Tashima, Y. (1984) Different muscle specific forms of rabbit skeletal muscleαactinin.Eur. J. Biochem. 143, 125–31.PubMedGoogle Scholar
  22. Knight, P. &Offer, G. (1978) p-NN′-Phenylenebismaleimide, a specific cross-linking agent for F-actin.Biochem. 175, 1023–32.Google Scholar
  23. Maher, P. A., Cox, G. F. &Singer, S. J. (1985) Zeugmatin: A new high molecular weight protein associated with Z-lines of adult and early embryonic striated muscle.J. Cell. Biol. 101, 1871–83.PubMedGoogle Scholar
  24. Maruyama, K., Kimura, S., Ohashi, K. &Kuwano, Y. (1981) Connectin, an elastic protein of muscle. Identification of “titin” with connectin.J. Biochem. 89, 701–9.PubMedGoogle Scholar
  25. Maruyama, K., Yoshioka, T., Higuchi, H., Ohashi, K., Kumura, S. &Natori, R. (1988) Connectin filaments link thick filaments and Z-lines in frog skeletal muscle as revealed by immunoelectron microscopy.J. Cell. Biol. 101, 2167–72.Google Scholar
  26. Masaki, T., Endo, M. &Ebashi, S. (1967) Localization of 6S component of alpha-actinin at the Z-band.J. Biochem. (Tokyo) 62, 630–2.Google Scholar
  27. Mogami, K., Fujita, S. C. &Hotta, Y. (1982) Identification of Drosophila indirect flight muscle myofibrillar proteins by means of two-dimensional electrophoresis.J. Biochem. 91, 643–650.PubMedGoogle Scholar
  28. Moerman, D. G., Benian, G. M., Barstead, R. J., Schriefer, L. A. &Waterston, R. H. (1988) Identification and intracellular localization of the unc-2 gene product ofCaenorhabditis elegans.Genes and Dev. 2, 93–105.PubMedGoogle Scholar
  29. Neville, D. M. (1971) Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system.J. Biol. Chem. 146, 6328–34.Google Scholar
  30. Oi, V. T. &Herzenberg, L. A. (1980) Immunoglobulinproducing hybrid cell lines. InSelected Methods in Cellular Immunology, (edited byMishell, B. B. &Shiigi, S. M.) pp. 351–72. California: W.H. Freeman.Google Scholar
  31. Podlubnaya, Z. A., Tskhovrebora, L. A., Zaalishvili, M. M. &Stephaneko, G. A. (1975) Electron microscopic study of alpha-actinin.J. Mol. Biol. 92, 357–9.PubMedGoogle Scholar
  32. Pringle, J. W. S. (1977) The mechanical characteristics of insect fibrillar muscle. InInsect Flight Muscle (edited byTregear, R. T.) pp. 177–96. Amsterdam: North Holland Publishing Co.Google Scholar
  33. Saide, J. D. (1981) Identification of a connecting filament protein in insect fibrillar flight muscle.J. Mol. Biol. 153, 661–79.PubMedGoogle Scholar
  34. Saide, J. D., Chin-Bow, S., Hogan-Sheldon, J., Busquets-Turner, L., Vigoreaux, J. O., Valgeirs-Dottir, K., &Pardue, M. L. (1989) Characterization of components of Z-bands in the fibrillar flight muscle ofDrosophila melanogaster.J. Cell. Biol. 109, 2157–67.PubMedGoogle Scholar
  35. Saide, J. D., Ericson, S. G. (1979) Immunofluorescence staining of honeybee Z-disc proteins.Biophys. J. 25, 242a (Abstr.).Google Scholar
  36. Saide, J. D. &Ullrick, W. C. (1973) Fine structure of the honeybee Z-disc.J. Mol. Biol. 79, 329–37.PubMedGoogle Scholar
  37. Saide, J. D. &Ullrick, W. C. (1974) Purification and properties of the isolated honeybee Z-disc.J. Mol. Biol. 87, 671–683.PubMedGoogle Scholar
  38. Sainsbury, G. M. &Hulmes, D. (1977) Notes on the structure of the Z-disc of insect flight muscle. InInsect Flight Muscle. (edited byTregear, R. T.) pp. 75–78. Amsterdam: North Holland Publishing Company.Google Scholar
  39. Sainsbury, G. M. &Bullard, B. (1980) New proline-rich proteins in isolated Z-discs.Biochem. J. 191, 333–9.PubMedGoogle Scholar
  40. Schachat, F. H., Canine, A. C., Briggs, M. M. &Reedy, M. C. (1985) The presence of two skeletal muscleα-actinins correlates with troponintropomyosin expression and Z-line width.J. Cell. Biol. 101, 1001–8.PubMedGoogle Scholar
  41. Squire, J. (1981) Ultrastructure of diverse muscle types: Arthropod muscles. InThe Structure and Basis of Muscular Contraction (edited bySquire, J.), pp. 381–414. New York: Plenum Press.Google Scholar
  42. Suzuki, A., Goll, D. E., Singh, I., Allen, R. E., Robson, R. M. &Stromer, M. H. (1976) Some properties of purified skeletal muscleα-actinin.J. Biol. Chem. 251, 6860–70.PubMedGoogle Scholar
  43. Suzuki, A., Goll, D. E., Stromer, M. H., Singh, I., &Temple, J. (1973)α-Actinin from red and white porcine muscle.Biochem. Biophys. Acta. 295, 188–207.PubMedGoogle Scholar
  44. Suzuki, A., Saito, M. &Nonami, Y. (1985) Localization of Z-nin and 34 000 dalton protein in isolated Z-disc sheets of rabbit skeletal muscle.Agric. Biol. Chem. 49, 537–8.Google Scholar
  45. Suzuki, A., Saito, M., Okitani, A. &Nonami, Y. (1981) Z-nin, a new high molecular weight protein required for reconstitution of the Z-disc.Agric. Biol. Chem. 45, 2535–42.Google Scholar
  46. Towbin, H., Staehelin, T. &Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Procedures and some applications.Proc. Natl. Acad. Sci. USA 76, 4350–4.PubMedGoogle Scholar
  47. Trombitas, K., &Tigyi-Sebes, A. (1975) The Z-line of the flight muscle of honeybee.Acta Biochem. Biophys. Acad. Sci. Hung. 10, 83–93.Google Scholar
  48. Wallraff, E., Schleicher, M., Modersitzki, M., Rieger, D., Isenberg, G. &Gerish, G. (1986) Selection of Dictyostelium mutants defective in cytoskeletal proteins: Use of an antibody that binds to the ends ofα-actinin rods.Embo J. 5, 61–7.PubMedGoogle Scholar
  49. Wang, K., McCere, J. &Tu, A. (1979) Titin: major fibrillar components of striated muscle.Proc. Natl. Acad. Sci. USA 76, 3698–702.PubMedGoogle Scholar
  50. Wang, K. (1982) Purification of titin and nebulin.Methods Enzymol. 85, 264–9.PubMedGoogle Scholar
  51. Wang, K., Wright, J. &Ramirez-Mitchell, R. (1984) Architecture of the titin/nebulin containing cytoskeletal lattice of the striated muscle sarcomere—evidence of elastic and inelastic domains of the bipolar filaments.J. Cell. Biol. 99(No. 4,Pt. 2), 435a (Abstract).Google Scholar
  52. Weber, K. &Osborn, M. (1969) The reliability of molecular weight determinations by dodecyl sulphate polyacrylamide gel electrophoresis.J. Biol. Chem. 244, 4406–12.PubMedGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1990

Authors and Affiliations

  • Judith D. Saide
    • 1
  • Stephen Chin-Bow
    • 1
  • Judith Hogan-Sheldon
    • 1
  • Lizette Busquets-Turner
    • 1
  1. 1.Department of PhysiologyBoston University School of MedicineBostonUSA

Personalised recommendations