Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Existence of bounded solutions for some degenerated quasilinear elliptic equations


We prove the existence of bounded solutions in L (Ω) of degenerate elliptic boundary value problems of second order in divergence form with natural growth in the gradient. For the Dirichlet problem our results cover also unbounded domains Ω.


  1. [1]

    R. A. Adams,Sobolev Spaces, Academic Press, London (1975).

  2. [2]

    L. Boccardo -F. Murat -J. P. Puel,Existence de solutions faibles pour des equations elliptiques quasilineares à croissance quadratique, inNonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vol. IV, edited byM. Brèzis andJ. L. Lions, Research Notes in Mathematies,84, Pitman, London (1983), pp. 19–73.

  3. [3]

    L. Boccardo -F. Murat -J. P. Puel,Resultats d'existence pour certains problems elliptiques quasilineares, Ann. Sc. Norm. Pisa, (4),11 (1984), pp. 213–235.

  4. [4]

    L.Boccardo - F.Murat - J. P.Puel,L-estimate and existence of a solution for some nonlinear elliptic equations, to appear in SIAM Math. Analysis.

  5. [5]

    L.Boccardo - F.Gallouët,Strongly nonlinear elliptic equations having natural growth terms and L1-data, to appear in Nonlinear Analysis T.M.A.

  6. [6]

    P. Donato -D. Giachetti,Quasilinear elliptic equations with quadratic growth in unbounded domains, Nonlinear Analysis T.M.A.,10 (1986), pp. 791–804.

  7. [7]

    S. Fučík -A. Kufner,Nonlinear Differential Equations, Elsevier, Holland (1980).

  8. [8]

    F. Guglielmino -F. Nicolosi,Sulle W-soluzioni dei problemi al contorno per operatori ellittici degeneri, Ric. Mat.,36 (1987), pp. 69–72.

  9. [9]

    F. Guglielmino -F. Nicolosi,Teoremi di esistenza per i problemi al contorno relativi alle equazioni ellittiche quasilineari, Ric. Mat.,37 (1988), fascicolo 1, pp. 157–176.

  10. [10]

    A. V.Ivanov - P. Z.Mkrtycjan,On the solvability of the first boundary value problems for certain classes, of degenerating, quasilinear elliptic equations of the second order, inBoundary Value Problems of Mathematical Physics, Vol. X, edited by O.Ladyzenskaja Proceedings of the Steklov Institute, A.M.S. Providence (1981), issue 2, pp. 11–35.

  11. [11]

    C. Miranda,Istituzioni di analisi funzionale lineare, voll. I e II, U.M.I., Gubbio (1978/1979).

  12. [12]

    M. K. V. Murthy -G. Stampacchia,Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pura Appl. (4),80 (1968) pp. 1–122.

  13. [13]

    F. Nicolosi,Regolarizzazione dette soluzioni deboli dei problemi al contorno per operatori parabolici, Le Matematiche,33 (1978) pp. 83–98.

Download references

Author information

Additional information

Work performed under the auspicies of G.N.A.F.A. of the C.N.R., partially supported by M.P.I. of Italy (40%).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Drábek, P., Nicolosi, F. Existence of bounded solutions for some degenerated quasilinear elliptic equations. Annali di Matematica pura ed applicata 165, 217–238 (1993).

Download citation


  • Elliptic Equation
  • Dirichlet Problem
  • Divergence Form
  • Unbounded Domain
  • Elliptic Boundary