Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Stability properties for partial Volterra integrodifferential equations

  • 50 Accesses

  • 7 Citations

Summary

Stability properties of the solutions of a Volterra's population equation including infinite delay and diffusion terms are studied via a linearized stability argument, which leads to investigating on operational characteristic equation. For a specific class of delay kernels time periodic solutions are shown to appear as the delay is increased.

References

  1. [1]

    M. C. Crandall -P. H. Rabinowitz,The Hopf bifurcation theorem in infinite dimensions, Arch. Rat. Mech. Anal.,67 (1978), pp. 53–72.

  2. [2]

    J. M. Cushing,Integrodifferential Equations and Delay Models in Population Dyanmics, Springer-Verlag, Berlin-Heidelberg-New York, 1977.

  3. [3]

    P. de Mottoni -A. Tesei,Asymptotic stability results for a system of quasilinear parabolic equations, Applic. Anal.,8 (1979), pp. 7–21.

  4. [4]

    A. Friedman -M. Shinbrot,Volterra integral equations in Banach space, Trans. Amer. Math. Soc.,126 (1967), pp. 131–179.

  5. [5]

    S. I. Grossman -R. K. Miller,Perturbation theory for Volterra integrodifferential systems, J. Diff. Eqns.,8 (1970), pp. 457–474.

  6. [6]

    T. Kato,Perturbation Theory for Linear Operators, Springer-Verlag, Berlin - Heidelberg - New York, 1966.

  7. [7]

    K. Kirchgässner -J. Scheurle,Bifurcation, inDynamical Systems: An International Symposium, vol. 1, L. Cesari, J. Hale and J. P. LaSalle Eds., Academic Press, New York - London, 1967.

  8. [8]

    R. K. Miller,Asymptotic stability and perturbation for linear Volterra integrodifferential systems, inDelay and Functional Differential Equations and Their Applications, K. Schmitt Ed., Academic Press, New York - London, 1972.

  9. [9]

    R. K. Miller,Volterra integral equations in a Banach space, Funkc. Ekv.,18 (1975), pp. 163–194.

  10. [10]

    A. Schiaffino,On a diffusion Volterra equation, Nonl. Anal.: TMA,3 (1979), pp. 595–600.

  11. [11]

    I. Stakgold -L. E. Patne,Nonlinear problems in nuclear reactor analysis, inNonlinear Problems in the Physical Sciences and Biology, I. Stakgod, D. D. Joseph and D. H. Sattinger Eds., Springer-Verlag, Berlin - Heidelberg - New York, 1973.

  12. [12]

    A.Tesei,Asymptotic stability results for a reaction-diffusion system, Talk delivered at the Oberwolfach Meeting «Mathematische Modelle der Biologie», 3–8 june 1978.

  13. [13]

    C. C. Travis -G. F. Webb,Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc.,200 (1974), pp. 395–418.

  14. [14]

    W. Walter,Differential and Integral Inequalities, Springer-Verlag, Berlin - Heidelberg - New York, 1970.

  15. [15]

    A. Wörz-Busekros,Global stability in ecological systems with continuous time delay, SIAM J. Appl. Math.,35 (1978), pp. 123–124.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tesei, A. Stability properties for partial Volterra integrodifferential equations. Annali di Matematica pura ed applicata 126, 103–115 (1980). https://doi.org/10.1007/BF01762503

Download citation

Keywords

  • Periodic Solution
  • Characteristic Equation
  • Specific Class
  • Linearize Stability
  • Stability Property