Annali di Matematica Pura ed Applicata (1923 -)

, Volume 153, Issue 1, pp 53–62 | Cite as

Singular integral operators on 53-0153-0153-01-spaces

  • Eiichi Nakai
  • Kôzô Yabuta


It is shown that certain singular integral operators with variable kernels leave invariant theL v,Φ -spaces studied by Campanato, Stampacchia, Peetre and others. Our results extend Peetre's work on convolution operators.


Integral Operator Singular Integral Operator Convolution Operator Variable Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G.Bourdaud,Lecture Notes, Cours de 3 Cycle, Université de Paris, VII (1984).Google Scholar
  2. [2]
    G. Bourdaud,Théorèmes de commutateurs avec régularité minimale, Prépublications 85T14, Université de Paris-Sud, Departement de Mathématique, Bât. 425, 91405 Orsay, France (1985).Google Scholar
  3. [3]
    S. Campanato,Proprietà di hölderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa,17 (1963), pp. 175–188.MathSciNetzbMATHGoogle Scholar
  4. [4]
    R. R.Coifman - Y.Meyer,Au delà des opérateurs pseudodifférentiels, Astérisque,57 (1978), Soc. Math. France.Google Scholar
  5. [5]
    G. David -J.-L. Journé,A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math.,120 (1984), pp. 371–398.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    S. Janson,On functions with conditions on the mean oscillation, Ark. Mat.,14 (1976), pp. 189–196.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    F. John -L. Nirenberg,On functions of bounded mean oscillation, Comm. Pure Appl. Math.,14 (1961), pp. 415–426.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    J.-L. Journé,Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón, Lecture Notes in Math.,994, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo (1983).Google Scholar
  9. [9]
    E. Nakai,On the restriction of functions of bounded mean oscillation to the lower dimensional space, Arch. Math.,43 (1984), pp. 519–529.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. Peetre, On convolution operators leavingL v,λ-spaces invariant, Ann. Mat. Pura Appl.,72 (1966), pp. 295–304.MathSciNetCrossRefGoogle Scholar
  11. [11]
    J. Peetre, On the theory ofL p,λ-spaces, J. Funct. Anal.,4 (1969), pp. 71–87.MathSciNetCrossRefGoogle Scholar
  12. [12]
    D. Sarason,Function Theory on the Unit Circle, Lecture Notes, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (1979).Google Scholar
  13. [13]
    S. Spanne,Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa,19 (1965), pp. 593–608.MathSciNetzbMATHGoogle Scholar
  14. [14]
    K. Yabuta,Generalisations of Calderón-Zygmund operators, Studia Math.,82 (1985), pp. 17–31, to appear.MathSciNetzbMATHGoogle Scholar
  15. [15]
    K.Yabuta,Calderón-Zygmund operators and pseudo-differential operators, to appear in Comm. Partial Differential Equations.Google Scholar
  16. [16]
    K.Yabuta,Weighted norm inequalities for pseudo-differential operators, preprint.Google Scholar
  17. [17]
    Y. Meyer,Real analysis and operator theory, Proc. Sympos. Pure Math.,43 (1985), pp. 219–235.MathSciNetCrossRefGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1989

Authors and Affiliations

  • Eiichi Nakai
    • 1
  • Kôzô Yabuta
    • 2
  1. 1.Yuki Daiichi Senior High SchoolIbaraki-kenJapan
  2. 2.Department of MathematicsIbaraki UniversityIbarakiJapan

Personalised recommendations