Annali di Matematica Pura ed Applicata

, Volume 146, Issue 1, pp 337–381

# Studies on the Painlevé equations

I.-Sixth Painlevé equation PVI
• Kazuo Okamoto
Article

## Summary

In this series of papers, we study birational canonical transformations of the Painlevé system ℋ, that is, the Hamiltonian system associated with the Painlevé differential equations. We consider also τ -function related to ℋ and particular solutions of ℋ. The present article concerns the sixth Painlevé equation. By giving the explicit forms of the canonical transformations of ℋ associated with the affine transformations of the space of parameters of ℋ, we obtain the non-linear representation: G→G*, of the affine Weyl group of the exceptional root system of the type F4 A canonical transformation of G* can extend to the correspondence of the τ -functions related to ℋ. We show the certain sequence of τ -functions satisfies the equation of the Toda lattice. Solutions of ℋ, which can be written by the use of the hypergeometric functions, are studied in details.

## Preview

### References

1. [1]
N.Bourbaki,Groupes et Algèbres de Lie, Chapitres 4, 5 et 6, Masson, Paris.Google Scholar
2. [2]
M. Jimbo -T. Miwa,Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II, Physica,2D (1981), pp. 407–448.Google Scholar
3. [3]
N. A. Lukashevich,The Theory of Painlevé's equations, Différents, Uravneniya,6 (1970), pp. 329–333.Google Scholar
4. [4]
K. Okamoto,Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé, Jap. J. Math.,5 (1979), pp. 1–79.Google Scholar
5. [5]
K. Okamoto,Polynomial Hamiltonians associated with Painlevé equations, I, Proc. Japan Acad.,56, Ser. A (1980), pp. 264–268; II, ibid., pp. 367–371.Google Scholar
6. [6]
K. Okamoto,On the τ-function of the Painlevé equations, Physica,2D (1981), pp. 525–535.Google Scholar
7. [7]
K. Okamoto,Isomonodromic deformation and Painlevé equations, and the Garnier system. J. Fac. Sci. Univ. Tokyo Sect. IA Math.,33 (1986), pp. 575–618.Google Scholar
8. [8]
K.Okamoto,Introduction to the Painlevé equations, Sophia Kokyuroku in Math.,19 (1985) (in Japanese).Google Scholar
9. [9]
K.Okamoto,Sur les échelles aux fonctions spéciales et l'équation de Toda, à paraítre dans J. Fac. Sci. Univ. Tokyo.Google Scholar
10. [10]
P. Painlevé,Sur les équations différentielles du second ordre à points critiques fixes, Oeuvres, t. III, (1977), pp. 115–119.Google Scholar

© Fondazione Annali di Matematica Pura ed Applicata 1985

## Authors and Affiliations

• Kazuo Okamoto
• 1
1. 1.Department of Mathematics, College of Arts and SciencesUniversity of TokyoTokyoJapan