Annali di Matematica Pura ed Applicata

, Volume 146, Issue 1, pp 337–381 | Cite as

Studies on the Painlevé equations

I.-Sixth Painlevé equation PVI
  • Kazuo Okamoto
Article

Summary

In this series of papers, we study birational canonical transformations of the Painlevé system ℋ, that is, the Hamiltonian system associated with the Painlevé differential equations. We consider also τ -function related to ℋ and particular solutions of ℋ. The present article concerns the sixth Painlevé equation. By giving the explicit forms of the canonical transformations of ℋ associated with the affine transformations of the space of parameters of ℋ, we obtain the non-linear representation: G→G*, of the affine Weyl group of the exceptional root system of the type F4 A canonical transformation of G* can extend to the correspondence of the τ -functions related to ℋ. We show the certain sequence of τ -functions satisfies the equation of the Toda lattice. Solutions of ℋ, which can be written by the use of the hypergeometric functions, are studied in details.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N.Bourbaki,Groupes et Algèbres de Lie, Chapitres 4, 5 et 6, Masson, Paris.Google Scholar
  2. [2]
    M. Jimbo -T. Miwa,Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II, Physica,2D (1981), pp. 407–448.Google Scholar
  3. [3]
    N. A. Lukashevich,The Theory of Painlevé's equations, Différents, Uravneniya,6 (1970), pp. 329–333.Google Scholar
  4. [4]
    K. Okamoto,Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé, Jap. J. Math.,5 (1979), pp. 1–79.Google Scholar
  5. [5]
    K. Okamoto,Polynomial Hamiltonians associated with Painlevé equations, I, Proc. Japan Acad.,56, Ser. A (1980), pp. 264–268; II, ibid., pp. 367–371.Google Scholar
  6. [6]
    K. Okamoto,On the τ-function of the Painlevé equations, Physica,2D (1981), pp. 525–535.Google Scholar
  7. [7]
    K. Okamoto,Isomonodromic deformation and Painlevé equations, and the Garnier system. J. Fac. Sci. Univ. Tokyo Sect. IA Math.,33 (1986), pp. 575–618.Google Scholar
  8. [8]
    K.Okamoto,Introduction to the Painlevé equations, Sophia Kokyuroku in Math.,19 (1985) (in Japanese).Google Scholar
  9. [9]
    K.Okamoto,Sur les échelles aux fonctions spéciales et l'équation de Toda, à paraítre dans J. Fac. Sci. Univ. Tokyo.Google Scholar
  10. [10]
    P. Painlevé,Sur les équations différentielles du second ordre à points critiques fixes, Oeuvres, t. III, (1977), pp. 115–119.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1985

Authors and Affiliations

  • Kazuo Okamoto
    • 1
  1. 1.Department of Mathematics, College of Arts and SciencesUniversity of TokyoTokyoJapan

Personalised recommendations