Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Second fundamental form of a map

  • 140 Accesses

  • 19 Citations

Summary

This paper is devoted to the study of the 2, fundamental form of a map, which generalizes this notion, well known for isometric immersions. We generalize results by Vilms, Yano, and Ishihara, and study in detail projective and umbilical maps.

Literature

  1. [Ca]

    Y.Carrière,Flots riemanniens et feuilletages géodésibles de codimension 1, Thèse de 3e cycle, Lille, 1981.

  2. [Ch]

    B. Y. Chen,Geometry of submanifolds, Marcel Dekker, New York, 1973.

  3. [Ch 1]

    B. Y. Chen,Extrinsic spheres in Kähler manifolds, Michigan Math. J.,23 (1976), pp. 327–330.

  4. [Ch 2]

    B. Y.Chen,Totally umbilical submanifolds, Soochow J. Math.,5 (1979).

  5. [Ch & Va]

    B. Y. Chen -L. Vanhecke,Differential geometry of geodesic spheres, Journal für die reine und angewandte Math.,325 (1981), pp. 28–67.

  6. [Die]

    J.Dieudonné,Eléments d'analyse III, Gauthier-Villars (1970).

  7. [Do]

    P. Dombrowski,Krümmungsgrössen gleichungsdefinierter Untermannigfaltigkeiten Riemannscher Mannigfaltigkeiten, Math. Nachr.,38 (1968), pp. 133–180.

  8. [Ee & Le]

    J. Eells -L. Lemaire,A report on harmonic maps, Bull. London Math. Soc.,10 (1978), pp. 1–68.

  9. [Ee & Sa]

    J. Eells -J. H. Sampson,Harmonic mappings of Riemannian manifolds, American J. Math.,86 (1964), pp. 109–160.

  10. [Gr & Mo]

    J. Grifone -J. M. Morvan,Courbures de Frenet d'une sous-variété d'une variété Riemanienne et «cylindricité», C.R.A.S. t. 283 (13 sept. 1976), Série A, pp. 207–210.

  11. [Ha]

    Z. Har'El,Projective mappings and distortion theorems, J. Diff. Geometry5 (1980), pp. 97–106.

  12. [He]

    Hermann,A sufficient condition that a mapping of Riemannian manifolds be a fiber bundle, Proc. American Math. Society,11 (1960), pp. 236–242.

  13. [Hi]

    N. J. Hicks,Connexion preserving spray maps, Illinois J. Math.,10 (1966), pp. 661–679.

  14. [Ko & No]

    S. Kobayashi -K. Nomizu,Foundations of Differential Geometry I et II, New York, Wiley Interscience (1963) et (1969).

  15. [Li]

    A.Lichnerowicz,Applications harmoniques et variétés Kähleriennes, Istituto Na-zionale di Alta Mathematica, Symposia Vol 3 (1970).

  16. [Mo & No]

    J. M. Morvan -T. Nore,Etude locale des applications projectives, C.R.A.S. t. 295, Série I, pp. 499–502 (8 novembre 1982).

  17. [No]

    O.Nouhaud,Déformations harmoniques, Thèse, Limoges, 1974.

  18. [Ob]

    M. Obata,Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan,14 (1962), pp. 333–340.

  19. [O N]

    B. O'Neill,The fundamental equations of a submersion, Michigan Math. J.,13 (1966), pp. 459–469.

  20. [Re]

    B. L. Reinhardt,The second fundamental form of a plane field, J. Diff. Geometry12 (1977), pp. 619–627.

  21. [Vi]

    J. Vilms,Totally geodesic maps, J. Diff. Geom.,4 (1970), pp. 73–79.

  22. [Vr]

    G. Vranceanu,Surfaces de rotations dans E4, Rev. Roum. Math. pures et Appl., XII, n.6 (1977), pp. 857–862.

  23. [Ya & Is]

    K. Yano -S. Ishihara,Harmonic and relatively affine mappings, J. Diff. Geometry, (10), (1975), pp. 501–509.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nore, T. Second fundamental form of a map. Annali di Matematica pura ed applicata 146, 281–310 (1986). https://doi.org/10.1007/BF01762368

Download citation

Keywords

  • Fundamental Form
  • Isometric Immersion