Annali di Matematica Pura ed Applicata

, Volume 146, Issue 1, pp 31–63 | Cite as

Diffraction of waves by inhomogeneous obstacles

  • Jorge Ize
  • Roland England
  • Federico J. Sabina


The two dimensional problem of diffraction of scalar waves by a bounded inhomogeneity in an otherwise unbounded medium is studied both theoretically and numerically. Using singular operator properties, existence and uniqueness of the solution, and the convergence of the numerical method used are proved.


Operator Property Dimensional Problem Scalar Wave Singular Operator Unbounded Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Adams,Sobolev Spaces, Academic Press, New York, 1975.Google Scholar
  2. [2]
    T. S. Angell -R. E. Kleinman,Boundary integral equations for the Helmholtz equation: the third boundary value problem, Math. Meth. in the Appl. Sci.,4 (1982), pp. 164–193.Google Scholar
  3. [3]
    T. S. Angell -R. E. Kleinman,Modified Green's functions and the third boundary value problem for the Helmholtz equation, Journal of Math. Anal. and Appl.,97, 1 (1983), pp. 81–94.Google Scholar
  4. [4]
    T. S.Angell - R. E.Kleinman,The Helmholtz equation with L2 boundary values, Applied math. Inst. Technical report No. 136 A, University of Delaware, 1983.Google Scholar
  5. [5]
    T. S.Angell - R. E.Kleinman,The Green's function for exterior boundary value problems for the Helmholtz equation, University of Strathclyde Seminars, 1984.Google Scholar
  6. [6]
    I. Babuška,The finite element method for elliptic equations with discontinuous coefficients, Computing,5 (1970), pp. 207–213.Google Scholar
  7. [7]
    A. P. Calderón,The multipole expansion of radiation fields, J. Rat. Mech. and Anal.3 (1954), pp. 523–537.Google Scholar
  8. [8]
    D. Colton,Runge's theorem and far field patterns for the impedance boundary value problem in acoustic wave propagation, SIAM J. Math. Anal.,13, 6 (1982), pp. 970–977.Google Scholar
  9. [9]
    D. Colton,The inverse scattering problem for time-harmonic acoustic waves, SIAM Review,26, 3 (1984), pp. 323–350.Google Scholar
  10. [10]
    D. Colton -A. Kirsch,Dense sets and far field patterns in acoustic wave propagation. SIAM J. Math. Anal.,15 (1984), pp. 996–1006.Google Scholar
  11. [11]
    R.England - J.Ize - F. J.Sabina,Scattered SH waves and displacement field over inhomogeneous surface obstacles in a halfspace, Earthquake Source modeling, Ground motion and Structural response, PVP-80/AMD-vol. 60, Editor S. K.Datta, (1984), pp. 81–95.Google Scholar
  12. [12]
    R. England -F. J. Sabina -I. Herrera,Scattering of SH waves by surface cavities of arbitrary shape using boundary methods, Phys. Earth Planet. Int.,21 (1980), pp. 148–157.Google Scholar
  13. [13]
    G. Fichera,Teoremi di completezza sulla frontiera di un dominio per taluni sistemi di funzioni, Ann. Mat. Pura Appl.,27 (1948), pp. 1–28.Google Scholar
  14. [14]
    P. Filippi,Problème de Transmission pour l'équation de Helmoltz scalaire et problèmes aux limites équivalents: application à la transmission gaz parfait-milieu poreux, Journal de Mécanique,18, 3 (1979), pp. 566–591.Google Scholar
  15. [15]
    G. Folland,Introduction to partial differential equations, Princeton Univ. Press, Princeton, 1976.Google Scholar
  16. [16]
    A. Friedman,Partial differential equations, Holt, Rinehart and Winston, Inc., 1969.Google Scholar
  17. [17]
    D.Gilbarg - L.Hörmander,Intermediate Schauder estimates, to appear.Google Scholar
  18. [18]
    D.Gilbarg, N. S.Trudinger,Elliptic partial differential equations of second order Springer Verlag, 1977.Google Scholar
  19. [19]
    G. M. Golutzin,Geometric theory of functions of a complex variable, Translation of Mathematical Monographs, Vol. 26, A.M.S. Providence, 1969Google Scholar
  20. [20]
    R. F. Goodrich,Properties of the boundary integral operators arising from the Helmholtz equation, Applicable Analysis,7 (1978), pp. 161–163.Google Scholar
  21. [21]
    N. M.Günter,Potential theory, F. Ungar Pub. Co., 1967.Google Scholar
  22. [22]
    I. Herrera -F. J. Sabina,Connectivity as an alternative to boundary integral equations, Construction of bases, Proc. Nat. Acad. Sci. U.S.A.,75 (1978), pp. 2059–2063.Google Scholar
  23. [23]
    J.Ize - R.England - F. J.Sabina,Theoretical and numerical study of diffraction of waves by inhomogeneous obstacles, Comunicaciones Técnicas, IIMAS, No.291 (1981).Google Scholar
  24. [24]
    D. S. Jerison -C. E. Kenig,The Neumann problem on Lipschitz domains, Bull. Amer. Math. Soc.,4, 2 (1981), pp. 263–267.Google Scholar
  25. [25]
    O. D.Kellogg,Foundations of potential theory, Springer Verlag, 1967.Google Scholar
  26. [26]
    R. E. Kleinman -G. F. Roach,Boundary integral equations for the three dimensional Helmholtz equation, SIAM Review,16 (1974), pp. 214–236.Google Scholar
  27. [27]
    M. A. Krasnosel'skii et al., Integral operators in spaces of summable functions, Noordhoff International Pub., Leyden, 1976.Google Scholar
  28. [28]
    R. Kress -G. F. Roach,Transmission problem for the Helmholtz equation, J. Math. Phys.,19, 6 (1978), pp. 1433–1437.Google Scholar
  29. [29]
    G. Kristensson -A. G. Ramm -S. Ström,Convergence of the T-matrix approach in scattering theory II, J. Math. Phys.,24, 11 (1983), pp. 2619–2631.Google Scholar
  30. [30]
    V. D.Kupradze et al.,Three dimensional problems of the mathematical theory of elasticity and thermoelasticity, North Holland, 1979.Google Scholar
  31. [31]
    O. A.Ladyzhenskaya - N. N.Ural'tseva,Linear and quasilinear elliptic equations, Academic Press, 1968.Google Scholar
  32. [32]
    J. L.Lions - E.Magenes,Non homogeneous boundary value problems and applications, Vol. I, Springer Verlag, 1972.Google Scholar
  33. [33]
    E. Magenes,Sul teorema dell'alternativa nei problemi misti per le equazioni lineari ellittiche del secondo ordine, Ann. Scuola Norm. Sup. Pisa,9 (1955), pp. 161–200.Google Scholar
  34. [34]
    P. A. Martin,Acoustic scattering and radiation problems, and the null-field method, Wave motion,4, 4 (1982), pp. 391–408.Google Scholar
  35. [35]
    P. A. Martin,On the null field equations for water-wave scattering problems, IMA J. of Appl. Math.,33 (1984), pp. 55–69.Google Scholar
  36. [36]
    S. G.Mikhlin,Variational methods in mathematical physics, Pergamon Press, 1964.Google Scholar
  37. [37]
    R. F. Millar,The Rayleigh hypothesis and a related least square solution to scattering problems for periodic surfaces and other scatterers, Radio Science,8 (1973), pp. 785–796.Google Scholar
  38. [38]
    R. F. Millar,On the completeness of sets of solutions to the Helmholtz equation, IMA J. of Appl. Math.,30 (1983), pp. 27–37.Google Scholar
  39. [39]
    N. I.Muskheliskvili,Singular integral equations, Wolters-Noordhoff Pub. Co., 1958.Google Scholar
  40. [40]
    J. Necas,Les methodes directes en théorie des equations elliptiques, Masson et Co., Paris, 1967.Google Scholar
  41. [41]
    U.Neri,Singular integrals, Springer Verlag Lectures Notes in Math. No. 200 (1971).Google Scholar
  42. [42]
    A. G. Ramm,Convergence of the T-matrix approach in scattering theory, J. Math. Phys.23 (1982), pp. 1123–1125.Google Scholar
  43. [43]
    K.Rektorys,Variational methods in mathematics, science and engineering, D. Reidel Pub. Co., 1977.Google Scholar
  44. [44]
    F. J.Sabina -I.Herrera - R.England,Theory of connectivity: Applications to scattering of seismic waves I. SH wave motions, Proc. 2è Int. Conf. on microzonation, San Francisco (1978);Comunicaciones Técnicas, IIMAS, No. 175 (1978).Google Scholar
  45. [45]
    F.Trèves,Basic linear partial differential equations, Academic Press, 1975.Google Scholar
  46. [46]
    M.Tsuji,Potential theory in modern function theory, 2∘ ed., Chelsea Pub. Co., 1975.Google Scholar
  47. [47]
    A. N.Tychonov - A. A.Samarski,Partial differential equations of mathematical physics, Holden Day Inc., 1967.Google Scholar
  48. [48]
    V. K.Varadan - V. V.Varadan, Eds.Acoustic, electromagnetic and elastic wave scattering. Focus on the T-matrix approach, Pergamon Press, 1980.Google Scholar
  49. [49]
    I. N.Vekua,New methods for solving elliptic equations, North Holland Pub. Co., 1967.Google Scholar
  50. [50]
    P. C. Waterman,New formulation of acoustic scattering, J. Acoust. Soc. Am.,45 (1969), pp. 1417–1429.Google Scholar
  51. [51]
    G. N.Watson,A treatise on the theory of Bessel functions, Cambridge Univ. Press., 1966Google Scholar
  52. [52]
    C.Wilcox,Scattering theory for the D'Alembert equation in exterior domains, Springer Verlag Lecture Notes in Mathematics No. 442 (1975).Google Scholar
  53. [53]
    K.Yosida,Functional analysis 3rd ed., Springer Verlag, 1971.Google Scholar
  54. [54]
    P. P.Zabreyko et al.,Integral equations. A reference text, Noordhoff Int. Pub. Co., 1975.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1985

Authors and Affiliations

  • Jorge Ize
    • 1
  • Roland England
    • 1
  • Federico J. Sabina
    • 1
  1. 1.Instituto de Investigaciones en Mátematicas Aplicadas y en SistemasUniversidad Nacional Autónoma de MéxicoMéxico, D.F.

Personalised recommendations